Mixture of noises and sampling non-log-concave posterior distributions – EUSIPCO 2022 –

Pierre Palud

Pierre Chainais, Franck Le Petit

Emeric Bron, Pierre-Antoine Thouvenin

Ecole Centrale de Lille, CRIStAL, LERMA Observatory of Paris, Meudon, funded by CNRS via 80|Prime

Laboratoire d'Études du Rayonnement et de la Matièr en Astrophysique et Atmosphères

Real life inverse problems

	Log-likelihood	Proposition
Mixture of noises	Untractable	Approx.
Forward model:		
→ expensive black-box	-	Model reduction
→ Non-linear	Non-concave	MTM kernel
→ Spans multiple decades	Non-grad-Lipschitz	P-MALA kernel
Uncertainty quantification	-	МСМС

Limitation: Sampler restricted to smooth log-posterior because of P-MALA (see slide 9)

Observation model

$$y_{n,\ell} = \max\left\{\omega, \, \boldsymbol{\epsilon}_{n,\ell}^{(m)} f_{n,\ell}(\boldsymbol{\Theta}) + \boldsymbol{\epsilon}_{n,\ell}^{(a)}\right\}$$

 $\begin{array}{lll} \Theta & & & & & \\ f_{n,\ell} & & & & \\ \epsilon_{n,\ell}^{(a)} \sim \mathcal{N}(0,\sigma_a^2) & & & \\ \epsilon_{n,\ell}^{(m)} \sim \log \mathcal{N}(0,\sigma_m^2) & & & \\ e.g., \ calibration \ error & \\ \omega > 0 & & \\ \end{array}$

How to deal with black-box forward map f? mixture of additive and multiplicative noises?

- How to deal with black-box forward map f?
- \rightarrow Model reduction

How to deal with mixture of additive and multiplicative noises?

ightarrow likelihood approximation with controlled error

$$Y = \epsilon^{(m)} f(\Theta) + \epsilon^{(a)}$$

Approximated model Moment matching likelihood approx (1 elt)

Additive approxMultiplicative approx
$$Y \simeq f(\Theta) + e^{(a)}$$
 $Y \simeq e^{(m)}f(\Theta)$ $e^{(a)} \sim \mathcal{N}(m_a, s_a^2)$ $e^{(m)} \sim \log \mathcal{N}(m_m, s_m^2)$ $\pi^{(a)}(y_{n,\ell}|\Theta)$ $\pi^{(m)}(y_{n,\ell}|\Theta)$

Deriving a new Likelihood (uncensored)

$$\tilde{\pi}(y_{n,\ell}|\Theta) \propto \pi^{(a)}(y_{n,\ell}|\Theta)^{1-\lambda_{n,\ell}} \pi^{(m)}(y_{n,\ell}|\Theta)^{\lambda_{n,\ell}}$$

with $\lambda_{n,\ell} = \lambda (f_{n,\ell}(\Theta))$: controls the mixing of the two approx sigmoid parametrized by a_{ℓ} (location and speed)

Deriving a new Likelihood (uncensored)

$$\tilde{\pi}(y_{n,\ell}|\Theta) \propto \pi^{(a)}(y_{n,\ell}|\Theta)^{1-\lambda_{n,\ell}} \pi^{(m)}(y_{n,\ell}|\Theta)^{\lambda_{n,\ell}}$$

with $\lambda_{n,\ell} = \lambda(f_{n,\ell}(\Theta))$: controls the mixing of the two approx sigmoid parametrized by a_{ℓ} (location and speed)

To evaluate approx:Kolmogorov-Smirnov-based metric $\varphi(a_{\ell})$.To get best approx:Minimize φ with Bayesian Optimization (BO).

A priori information

a priori information on $\boldsymbol{\Theta} \in \mathbb{R}^{N \times D}$ combines 2 priors:

- spatial regularization, e.g.,
 - smoothed Total Variation
 - L₂-norm of image gradient
 - L₂-norm of image Laplacian
 - L₂-norm of image wavelet decomposition
- Validity domain for each physical parameter $\theta_{n,d}$
 - \Rightarrow BUT non-smooth
 - \implies use smooth penalty function when $\theta_{n,d}$ is out of validity domain:

Proposed sampler: two kernels:

Forward model covers multiple decades
non-grad.-Lipschitz log-posterior
Preconditioned-MALA kernel with RMSProp
Role: Efficient local exploration
Limitation: restricted to smooth log-posteriors

Non-log-concave posterior
⇒ potential multimodality
Multiple-Try Metropolis (MTM) kernel
Role: Jumps between modes

Application to an astrophysics synthetic dataset

$\Theta_{.3}$: Radiative

$\Theta_{.4}$: Depth

Conclusion

	Log-likelihood	Proposition
Mixture of noises	Untractable	Approx.
Forward model:		
→ Black-box expensive		Model reduction
→ Non-linear	Non-concave	MTM kernel
→ Spans multiple decades	Non-grad-Lipschitz	P-MALA kernel

Applications

✓ Astrophysics synthetic yet realistic dataset
→ OrionB data and JWST obs. (perspective)

