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1. Introduction

Hyperspectral imagery

e high spectral resolution, low spatial resolution = hyperspectral
unmixing,

e hyperspectral unmixing

> identifying the reference spectral signatures in the data
(endmembers)

> estimating the endmember relative fraction in each pixel
(abundances).

Unmixing multi-temporal hyperspectral images
e I" hyperspectral images acquired over the same area

e varying acquisition conditions + inherent variability of the imaged
scene (natural evolution) = variability

e increasing number of available images (several large images, sig-
nificant number of images)

> online estimation (sequential analysis)
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Figure 1: Spectral Variability (P. Gader, A. Zare, R. Close, J. Aitken, G. Tuell,
MUUFL Gulfport Hyperspectral and LIDAR Airborne Data Set, University of Florida, Gainesville,
FL, Tech. Rep. REP-2013-570, Oct. 2013.)

2. Model

Assumptions
>the T" images of the sequence share K endmembers (K known)

> the pixels of each image are similarly affected by spectral variabil-
ity (first approximation).

Perturbed linear mixing model (PLMM)
e pixel spectrum = linear combination of corrupted endmembers

e corrupted endmembers = endmembers affected by an additive
time-varying perturbation vector

K
Ynt = Z Afent (mk + dmkt) + bt (1)
k=1
Matrix formulation
Y = (M + th)At + By (2)
N number of pixels
L number of spectral bands
K number of endmembers
Y:=|yit,---, YNt € REXN tth hyperspectral image
M=mj,... mg| € RLXHK endmember matrix
Ay =lag,...,any € REAXN tth abundance matrix

dM; = [dmyy, ..., dmygy] € RELXE ¢th variability matrix

Constraints

e abundance and endmembers (physical considerations)
Ty  _
MEOL,Ka AtEOK,Nv Ath_]-N7 VtE{l,,T} (3)

o variability (modeling): small average temporal variability 4+ upper
bound for the instantaneous variability energy

T

1

?E:th <k, [[dMyllp <o, Vte{l,...,T} (4)
t=1

3. Problem formulation

e Two-stage stochastic problem, associated with the empirical risk
minimization

T
1

nin ; WY, M) + SU(M) (5)

h(Y¢, M) = min f(Ye, M, A, dM) (6)

(A,dM)GAK XDt

> f : regularized instantaneous discrepancy measure

> h : cost of the tth optimal decision to update the endmember
matrix M given the data available at time ¢

> W : endmember regularization.

>M={M:M =0y, g}

> A ={A:A =0y, Allg =1y}

> Dy ={dM : [dM|jp <o} N{dM: |[dM + E;_{||p < tx}
>E; =Y, dM;.

e White Gaussian noise assumption

|
f(Ye, M, A, dM) = - | Y; — (M + dM)A|
+ a®(A) +yT¢(dM)

(7)

> @4, Ty . appropriate regularizations
> trade-off between the data fitting term and the penalties ®;(A),
U(M) and T¢(dM) controlled by (a, 3, 7).

Abundance and variability regularization
Moderate/smooth changes assumed from one image to another

Oi(A) = - [|A — A [7 (8)

T4(dM) =

O | —DNY| —

dM — dM, |} (9)

Endmember regularization
Constrains the volume of the simplex whose vertices are the end-
member signatures
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Figure 2: Example of endmembers (in red) and variability (in blue)
obtained when removing the constraint on the averaged variability.

4. An online algorithm

Structure of the online algorithm

e whenever an image Y is received, local abundance and variabil-
ity estimation by a proximal alternating linearized minimization

(PALM) algorithm

> PALM guaranteed to converge to a critical point of the non-
convex problem (6)

e ecndmembers updated by proximal gradient descent steps
e possibility to add a forgetting factor £ €]0, 1]

e provided problem (6) exclusively admits locally unique critical
points, Algo. 1 converges to a critical point of Problem (5) as
T — 400.

Algorithm 1: Online unmixing algorithm.
Data: M, Ay, dMy, a >0, 5> 0,7 >0, £ €]0,1]
begin

Coy < Og x;

Dy < 0g k;

Eo < 0p k;

fort=1to 1T do

a Random selection of an image Y; ;

// Abundance and variability estimation by PALM

b (At7 th) < arg min f(Yt7 Mta A7 dM)J

(A, dM)eAy xDy
Ci «£C + AtA;F ,

Dt < th_l + (thAt — Yt)Artr ;
Et < (SEt_l -+ th ,

// Endmember update

c M, < argmin 7 [3 T((MTMC,) + Tr(M'D,)] + S¥(M)
MeM

geeey — 1.

5. Experiment with synthetic data

e Method evaluated on 15 linear mixtures of size 31 x 30, composed
of 413 bands

e No pure pixel, mixtures corrupted by an additive white Gaussian
noise to ensure SNR = 30 dB

e Abundance and endmembers initialized with VCA /FCLS

e Simulation scenario: Algo. 1 run for 50 cycles through the whole
dataset, PALM and proximal gradient descent stopped after 50
iterations, &€ = 0.99, @ = 3.9 x 1072, 8 = 54 x 107% ~ =
3.2x 1074 02 =124, k* = 1.0.
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Figure 3: Abundance maps of my; [0: black, 1: white| (rows: true
maps, proposed method, VCA /FCLS, SISAL/FCLS).
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Figure 4: Abundance maps of mo; [0: black, 1: white| (rows: true
maps, proposed method, VCA /FCLS, SISAL/FCLS).

Figure 5: Abundance maps of mg; [0: black, 1: white| (rows: true
maps, proposed method, VCA /FCLS, SISAL/FCLS).
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Figure 6: Corresponding endmembers [rows: true endmembers (in

red) and variability (in blue), proposed method, VCA, SISAL.

Table 1:  Simulation results obtained with synthetic data
(GMSE(A)x1072, GMSE(dM) x10~% RE x107°).

VCA/FCLS SISAL/FCLS Prop. method

aSAM(M) (°)  8.9792 3.6685 1.9898
GMSE(A) 6.67 3.90 0.47
CMSE(dM) / / 3.07
RE 9.59 9.49 9.63
time (s) 2 2.2 561

6. Conclusion and future work

» Proposition of an online hyperspectral unmixing algorithm ac-
counting for endmember temporal variability

> Consider abrupt endmember changes (common in real data)
> Incorporate spatial variability

> Find automatic rules to adjust the regularization parameters
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