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Abstract—Hyperspectral unmixing is aimed at identifying the
reference spectral signatures composing an hyperspectral image
and their relative abundance fractions in each pixel. In practice,
the identified signatures may vary spectrally from an image
to another due to varying acquisition conditions, thus inducing
possibly significant estimation errors. Against this background,
hyperspectral unmixing of several images acquired over the same
area is of considerable interest. Indeed, such an analysis enables
the endmembers of the scene to be tracked and the corre-
sponding endmember variability to be characterized. Sequential
endmember estimation from a set of hyperspectral images is
expected to provide improved performance when compared
to methods analyzing the images independently. However, the
significant size of hyperspectral data precludes the use of batch
procedures to jointly estimate the mixture parameters of a
sequence of hyperspectral images. Provided that each elementary
component is present in at least one image of the sequence, we
propose to perform an online hyperspectral unmixing accounting
for temporal endmember variability. The online hyperspectral
unmixing is formulated as a two-stage stochastic program, which
can be solved using a stochastic approximation. The performance
of the proposed method is evaluated on synthetic and real data.
A comparison with independent unmixing algorithms finally
illustrates the interest of the proposed strategy.

Index Terms—Hyperspectral imagery, perturbed linear un-
mixing (PLMM), endmember temporal variability, two-stage
stochastic program, stochastic approximation (SA).

I. INTRODUCTION

HYPERSPECTRAL imagery has known an increasing

interest over the past decades due to the significant

spectral information it conveys. Acquired in hundreds of

contiguous spectral bands (e.g., from 300 nm to 2600 nm for

the AVIRIS sensor), hyperspectral (HS) images facilitate the

identification of the elements composing the imaged scene1.

However, the high spectral resolution of these images is

mitigated by their lower spatial resolution, which results in

pixel spectra composed of mixtures of reference signatures.

Spectral unmixing consists of determining the reference spec-

tral signatures composing the data – referred to as endmembers

– and their abundance fractions in each pixel according to

a predefined mixture model accounting for several environ-

mental factors (declivity, multiple reflections, ...). Provided
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microscopic interactions between the materials of the imaged

scene are negligible and the relief of the scene is flat, a

linear mixing model (LMM) is traditionally used to describe

the data [1]. However, varying acquisition conditions such as

illumination or natural evolution of the scene may significantly

alter the shape and the amplitude of the spectral signatures

acquired, thus affecting the extracted endmembers from an

image to another. In this context, HS unmixing of several

images acquired over the same area at different time instants

can be of considerable interest. Indeed, such an analysis en-

ables the endmembers of the scene and endmember variability

to be assessed, thus improving endmember estimation when

compared to independent image analyses performed with any

state-of-the-art unmixing method.

So far, spatial variability within a given image has been

considered in various models either derived from a statistical

or a deterministic point of view [2]. The first class of methods

assumes that the endmember spectra are realizations of multi-

variate distributions [3]–[5]. The second class of methods rep-

resents endmember signatures as members of spectral libraries

associated with each material (bundles) [6]. Another recently

proposed approach consists in estimating the parameters of an

explicit variability model [7]. To the best of our knowledge,

spatio-temporal variability has been analyzed for the first time

in the Bayesian framework proposed in [8]. Another recent

contribution similarly resorts to a batch estimation technique

to address spectral unmixing of multi-temporal HS images

[9]. However, HS unmixing using a significant number of

images or several large images precludes the use of batch

estimation procedures as in [8], [9] due to limited memory and

computational resources. Since online estimation procedures

enable data to be sequentially incorporated into the estimation

process without the need to simultaneously load all the data

into memory, we focus in this paper on the design of an online

HS unmixing method accounting for temporal variability.

Since the identified endmembers can be considered as

time-varying instances of reference endmembers, we use the

perturbed linear mixing model (PLMM) proposed in [7] to

account for spectral variability. However, inspired by the works

presented in [10], [11], we formulate the unmixing problem

as a two-stage stochastic program that allows the model

parameters to be estimated online contrary to the algorithm

proposed in [7]. To the best of our knowledge, it is the first

time HS unmixing accounting for temporal variability has been

formulated as a two-stage stochastic program solved by an
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TABLE I
NOTATIONS.

N number of pixels
L number of spectral bands
R number of endmembers
T number of images

ynt ∈ R
L nth pixel of the tth image

Yt ∈ R
L×N lexicographically ordered pixels of the tth image

M ∈ R
L×R endmember matrix

dMt ∈ R
L×R tth variability matrix

At ∈ R
R×N tth abundance matrix

ant ∈ R
R nth column of the matrix At

� component-wise inequality

Y [0, 1]L×N

M [0, 1]L×R

SR unit simplex of RR

AR

{

A ∈ R
R×N

∣

∣an ∈ SR, ∀n ∈ J1, NK
}

BF(Z, κ)
{

X ∈ R
L×R

∣

∣‖X− Z‖F ≤ κ
}

, κ > 0

D BF(0, σ) ∩
{

dM
∣

∣‖E[dM]‖F ≤ κ
}

Dt BF(0, σ) ∩
{

dM

∣

∣

∣

∥

∥

∥

∑t−1
i=1 dMi + dM

∥

∥

∥

F
≤ tκ

}

Zt AR ×Dt

Q(Yt,M) {(A,dM) ∈ Zt|∇(A,dM)f(Yt,M,A,dM) = 0}
PS projector on the set S
P+ projector on

{

X ∈ R
L×R

∣

∣X � 0L,R

}

〈X,Y〉 matrix inner product Tr(XTY)

ιS(x)

{

0 if x ∈ S
+∞ otherwise.

online2 algorithm.

The paper is organized as follows. The proposed PLMM

accounting for temporal variability is introduced in Section

II. Section III describes an online algorithm to solve the

resulting optimization problem. Experimental results obtained

on synthetic and real data are reported in Sections IV and

V respectively. The results obtained with the proposed algo-

rithm are systematically compared to those obtained with the

vertex component analysis / fully constrained least squares

(VCA [12] / FCLS [13], [14]), SISAL [15] / FCLS, the

ℓ1/2 non-negative matrix factorization (NMF) [16] and the

BCD/ADMM algorithm of [7], each method being indepen-

dently applied to each image of the sequence. Section VI

finally concludes this work.

II. PROBLEM STATEMENT

A. Perturbed linear mixing model (PLMM)

We consider HS images acquired at T different time instants

over the same scene, assuming that at most R endmembers

are present in the resulting time series and that the images

share these R common endmembers. Each endmember does

not need to be present in each image, but at least in one

image of the time series. Given an a priori known number

of endmembers R, the PLMM consists in representing each

pixel ynt by a linear combination of the R endmembers –

denoted by mr – affected by a perturbation vector dmrt

accounting for temporal endmember variability. The proposed

model considers the case where the variability essentially

results from the evolution of the scene or from the global

acquisition conditions from one image to another. As a first

2The terminology “online” is slightly abusive in our context since the time
difference between two consecutive images can extend to several months.

approximation, the variability is assumed to be constant on

each image. The resulting PLMM can thus be written

ynt =

R∑

r=1

arnt

(
mr + dmrt

)
+ bnt (1)

for n = 1, . . . , N and t = 1, . . . , T , where ynt denotes the

nth image pixel at time t, mr is the rth endmember, arnt is

the proportion of the rth endmember in the nth pixel at time

t, and dmrt denotes the perturbation of the rth endmember

at time t. Finally, bnt models the noise resulting from the

data acquisition and the modeling errors. In matrix form, the

PLMM (1) can be written as

Yt = (M+ dMt)At +Bt (2)

where Yt = [y1t, . . . ,yNt] is an L × N matrix containing

the pixels of the tth image, M denotes an L × R matrix

containing the endmembers, At is an R×N matrix composed

of the abundance vectors ant, dMt is an L×R matrix whose

columns are the perturbation vectors associated with the tth
image, and Bt is an L×N matrix accounting for the noise at

time instant t. The non-negativity and sum-to-one constraints

usually considered to reflect physical considerations are

At � 0R,N , AT
t 1R = 1N , ∀t = 1, . . . , T

M � 0L,R

(3)

where � denotes a component-wise inequality. We also con-

sider the following assumptions on the inherent variability of

the observed scenes

‖dMt‖2F ≤ σ2, for t = 1, . . . , T (4)
∥∥∥∥∥
1

T

T∑

t=1

dMt

∥∥∥∥∥

2

F

≤ κ2 (5)

where σ and κ are fixed positive constants, and ‖·‖F denotes

the Frobenius norm. These two constraints can be interpreted

in terms of the feasible domain of M and dMt. Indeed,

introducing the perturbed endmembers Mt , M+ dMt, the

constraint (4) can be reformulated as

‖dMt‖2F = ‖M−Mt‖2F ≤ σ2 ⇔ M ∈
T⋂

t=1

BF(Mt, σ)

where BF(Mt, σ) is the ball of center Mt and of radius σ.

This highlights the fact that the number of constraints imposed

on the endmembers increases with T , i.e., the more images

are processed, the more information can be extracted in terms

of endmember signatures. On the other hand, (5) constrains

the perturbed endmembers to be distributed around the true

endmembers, i.e., the endmember signatures M should reflect

the average behavior of the perturbed endmembers Mt in

the sequence. In practice, setting σ to a reasonable value is

desirable from a modeling point of view, since very large

perturbations should probably be interpreted as outliers, thus

leading to the removal of the corrupted elements from the

unmixing process. Note however that the algorithm proposed

in Section III-B is independent from any consideration on the

values of σ2 and κ2.

Remark. In practice, HS unmixing is performed on re-

flectance data, hence Yt ∈ [0, 1]L×N . The abundance

sum-to-one and non-negativity constraints further imply
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M ∈ [0, 1]L×R. In fact, the compactness of both the data

support and the space associated with the endmember con-

straints – denoted by Y and M respectively – is crucial for the

convergence result given in Paragraph III-C. In addition, the

images Yt can be assumed to be independent and identically

distributed (i.i.d.) since these images have been acquired by

possibly different sensors at different time instants.

B. Problem formulation

In order to design an online estimation algorithm, the model

(1) combined with the constraints (3) can be used to formulate

a two-stage stochastic program consisting in estimating the

endmembers present in the image sequence. Since only the

endmembers are supposed to be commonly shared by the

different images, we propose to minimize a marginal cost

function obtained by marginalizing an instantaneous cost func-

tion over the abundances and the variability terms, so that the

resulting cost only depends on the endmembers. Assuming

the expectations are well-defined, we consider the following

optimization problem

min
M∈M

g(M) = EY,A,dM

[
f
(
Y,M,A,dM

)]
(6)

where M = [0, 1]L×R and where the function f is defined as

f(Y,M,A,dM) =
1

2
‖Y − (M+ dM)A‖2F

+ αΦ(A) + βΨ(M) + γΥ(dM)
. (7)

Φ,Ψ and Υ denote appropriate penalization terms on the

abundances, the endmembers and the variability with

A ∈ AR =
{
A ∈ R

R×N
∣∣an ∈ SR, for n = 1, . . . , N

}
(8)

dM ∈ D = BF(0, σ) ∩
{
dM

∣∣ ∥∥E
[
dM

]∥∥
F
≤ κ

}
. (9)

The parameters α, β and γ ensure a trade-off between the data

fitting term and the penalties. In practice, g is approximated

at time t by an upper bound ĝt given by a stochastic approx-

imation [11]

ĝt(M) =
1

2t

t∑

i=1

‖Yi − (M+ dMi)Ai‖2F + βΨ(M)

=
1

t

t∑

i=1

(
1

2
‖MAi‖2F − 〈Yi − dMiAi,MAi〉

)

+ βΨ(M) + c

=
1

t

[
1

2
Tr(MTMCt) + Tr(MTDt)

]
+ βΨ(M) + c

(10)

where 〈X,Y〉 = Tr(XTY), c is a constant independent from

M and

Ct =
t∑

i=1

AiA
T
i , Dt =

t∑

i=1

(dMiAi −Yi)A
T
i . (11)

Besides, D is approximated by

Dt = BF(0, σ) ∩ {dM | ‖dM+Et−1‖F ≤ tκ} (12)

with

Et =

t∑

i=1

dMi. (13)

Examples of penalizations that will be considered in this study

are detailed in the following paragraphs.

Algorithm 1: Online unmixing algorithm.

Data: M(0), A0, dM0, α > 0, β > 0, γ > 0, ξ ∈]0, 1]
begin

C0 ← 0R,R;
D0 ← 0L,R;
E0 ← 0L,R;
for t = 1 to T do

a Random selection of an image Yt (random permutation of
the image sequence);
// Abundance and variability estimation by

PALM [19], cf. §III-B1

b (At,dMt) ∈ argmin
(A,dM)∈AR×Dt

f(Yt,M(t),A,dM);

Ct ← ξCt−1 +AtA
T
t ;

Dt ← ξDt−1 + (dMtAt −Yt)AT
t ;

Et ← ξEt−1 + dMt;

// Endmember update [11, Algo. 2], cf.

§III-B2

c M(t) ← argmin
M∈M

ĝt(M);

Result: M(T ), (At)t=1,··· ,T , (dMt)t=1,··· ,T

1) Abundance penalization: In this work, the abundance

penalization Φ has been chosen to promote temporally smooth

abundances – in the ℓ2-norm sense – between two consecutive

images, leading to

Φ(At) =
1

2
‖At −At−1‖2F . (14)

As long as Φ satisfies the regularity condition given in

Paragraph III-C, any other type of prior knowledge relative to

the abundances can be incorporated into the proposed method.

2) Endmember penalization: Classical endmember penal-

izations found in the literature consist in constraining the size

of the (R − 1)-simplex whose vertices are the endmembers.

In this paper, we consider the mutual distance between each

endmember introduced in [17], [18], defined as

Ψ(M) =
1

2

R∑

i=1

(
R∑

j=1

j 6=i

‖mi −mj‖22

)
=

1

2

R∑

r=1

‖MGr‖2F (15)

where
Gr = −IR + er1

T
R (16)

and er denotes the rth canonical basis vector of RR.

3) Variability penalization: Assuming that the spectral vari-

ation between two consecutive images is a priori temporally

smooth, we consider the following ℓ2-norm penalization

Υ(dMt) =
1

2
‖dMt − dMt−1‖2F . (17)

Similarly, any other type of prior knowledge relative to the

variability can be considered as long as Υ satisfies the regu-

larity condition given in Paragraph III-C.

III. A TWO-STAGE STOCHASTIC PROGRAM

A. Two-stage stochastic program: general principle

The following lines briefly recall the main ideas presented

in the introduction of [10]. A two-stage stochastic program is

generally expressed as

min
M

EY,Z

[
f
(
Y,M,Z

)]
s.t. M ∈ M, with Z ∈ Z. (18)

At the first stage, M must be chosen before any new data

Y is available. At the second-stage, when M has been fixed
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Algorithm 2: Abundance and variability estimation using PALM.

Data: Yt,M(t),A
(0)
t ,dM

(0)
t ,Et−1

begin

k ← 0;
while stopping criterion not satisfied do

// Abundance update

A
(k+1)
t ← Update

(

A
(k)
t

)

; // cf. (25)

// Variability update

dM
(k+1)
t ← Update

(

dM
(k)
t

)

; // cf. (28)

k ← k + 1;

At ← A
(k)
t , dMt ← dM

(k)
t ;

Result: (At,dMt)

and a new data is acquired, the second-stage variable Z is

computed as the solution (if it is unique and well defined) to

the optimization problem

min
Z∈Z

f(Y,M,Z). (19)

Given an independent and identically distributed (i.i.d) T -

sample (Y1, . . . ,YT ), problem (18) can be approximated by

the sample average approximation (SAA)

min
M,Z1,...,ZT

1

T

T∑

t=1

f(Yt,M,Zt), s.t.M ∈ M, Zt ∈ Z. (20)

Moreover, when the second-stage (19) admits a unique solu-

tion, (20) can be rewritten as

min
M∈M

1

T

T∑

t=1

h(Yt,M) (21)

h(Yt,M) = min
Z∈Z

f(Yt,M,Z) (22)

which is the SAA corresponding to

min
M∈M

EY

[
h(Y,M)

]
(23)

h(Y,M) = min
Z∈Z

f
(
Y,M,Z

)
(24)

where the two stages explicitly appear. However, f defined

in (7) is non-convex with respect to Z = (A,dM), where

Z = AR × D. Thus, problem (19) does not admit a unique

global minimum, and existing algorithms will at most provide

a critical point of f(Y,M, ·) + ιZ , where ιZ denotes the

indicator function of the set Z . In this specific case, a new

convergence framework based on a generalized equation has

been developed in [10]. Such a framework enables a con-

vergence result in terms of a critical point {M,Z1, . . . ,ZT }
of (20) to be obtained. However, the significant size of the

SAA problem (20) in our case is generally too expensive

from a computational point of view. To alleviate this problem,

we propose to slightly adapt the work developed in [11] to

propose an online estimation algorithm described in Algo. 1.

This algorithm has the same convergence property as [11]

provided the non-convex function f(Y,M, ·)+ιZ exclusively

admits locally unique critical points. Further details are given

in Paragraph III-C.

B. Parameter estimation

Whenever an image Yt has been received, the abun-

dances and variability are estimated by a proximal alternating

linearized minimization (PALM) algorithm [19], which is

Algorithm 3: Endmember estimation.

Data: M(t,0) = M(t−1),Ct,Dt

begin

k ← 0;
while stopping criterion not satisfied do

// Endmember update

M(t,k+1) ← Update
(

M(t,k)
)

; // cf. (31)

k ← k + 1;

M(t) ←M(t,k);

Result: M(t)

guaranteed to converge to a critical point (A∗,dM∗) of

f(Yt,M, ·, ·) + ιAR×Dt
. The endmembers are then updated

by proximal gradient descent steps, similarly to [11]. Further

details on the projections involved in this section are given in

Appendix A.

1) Abundance and variability estimation: A direct applica-

tion of [19] under the constraints (3) leads to the following

abundance update rule

A
(k+1)
t = PAR

(
A

(k)
t − 1

L
(k)
1t

∇Af(Yt,M
(t),A

(k)
t ,dM

(k)
t )

)

(25)

where L
(k)
1t is the Lipschitz constant of

∇Af(Yt,M
(t), ·,dM(k)

t ) and

∇Af(Yt,M
(t),At,dMt) = α(At −At−1)

+ (M(t) + dMt)
T
[
(M(t) + dMt)At −Yt

] (26)

L
(k)
1t =

∥∥∥(M(t) + dM
(k)
t )T(M(t) + dM

(k)
t ) + αIR

∥∥∥
F
. (27)

Note that the projection PAR
can be exactly computed using

the algorithms proposed in [20], [21]. Similarly, the update

rule for the variability terms is

dM
(k+1)
t =

PDt

(
dM

(k)
t − 1

L
(k)
2t

∇dMf(Yt,M
(t),A

(k+1)
t ,dM

(k)
t )

)

(28)

where L
(k)
2t is the Lipschitz constant of

∇dMf(Yt,M
(t),A

(k+1)
t , ·) and

∇dMf(Yt,M
(t),At,dMt) = γ(dMt − dMt−1)

+
[
(M(t) + dMt)At −Yt

]
AT

t

(29)

L
(k)
2t =

∥∥∥A(k+1)
t A

(k+1)T
t + γIR

∥∥∥
F
. (30)

Note that the projection PDt
can be efficiently approximated

using the Dykstra algorithm (see [22]–[24]). The resulting

algorithm is summarized in Algo. 2.

2) Endmember estimation: Similarly to III-B1, a direct

application of the method detailed in [11], [19] yields

M(t,k+1) = P+

(
M(t,k) − 1

L3t
∇Mĝt(M

(t,k))

)
(31)

where P+ is the projector on {X|X � 0L,R} and L3t denotes

the Lipschitz constant of ∇Mĝt(M
(t,k)). Note that
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∇Mĝt(M) = M

(
1

t
Ct + β

R∑

r=1

GrG
T
r

)
− 1

t
Dt (32)

L3t =

∥∥∥∥∥
1

t
Ct + β

∑

r

GrG
T
r

∥∥∥∥∥
F

. (33)

The resulting algorithm is summarized in Algo. 3.

C. Convergence guarantee

To ensure the convergence of the generated endmember

sequence (M(t))t towards a critical point of the problem (18),

we make the following assumptions.

Assumption 1. The quadratic functions ĝt are strictly convex

and admit a Hessian matrix lower-bounded in norm by a

constant µM > 0.

Assumption 2. The penalty functions Φ, Ψ and Υ are gradient

Lipschitz continuous with Lipschitz constant cΦ, cΨ and cΥ
respectively. In addition, Φ and Υ are assumed to be twice

continuously differentiable.

Assumption 3. The function f(Yt, ·, ·, ·) is twice continu-

ously differentiable. The Hessian matrix of f(Yt,M, ·, ·) –

denoted by H(A,dM)f – is invertible at each critical point

(A∗
t ,dM

∗
t ) ∈ Q(Yt,M).

In practice, Assumption 1 may be enforced by adding

a penalization term µM

2 ‖M‖2F to the objective function ĝt,
where µM is a small positive constant. Note that µM is only

a technical guarantee used in the convergence proof reported

in Appendix C, which should not be computed explicitly to be

able to run the algorithm. Assumption 2 is only included here

for the sake of completeness, in case other penalizations than

those given in Section II are considered. Indeed, this assump-

tion is obviously satisfied by the penalizations mentioned in

this work. Assumption 3, crucial to Proposition 1, is further

discussed in Appendix B to ease the reading of this paper.

By adapting the arguments used in [11], the convergence

property summarized in Proposition 1 can be obtained.

Proposition 1 (Convergence of (M(t))t, [11]). Under the

assumptions 1,2 and 3, the distance between M(t) and the

set of critical points of the hyperspectral unmixing problem

(6) converges almost surely to 0 when t tends to infinity.

Proof. See Appendix C.

D. Computational complexity

Dominated by matrix-product operations, the per image

overall complexity of the proposed method is of the order

O
{[

LR(N +ND
iter) +R2(L+N)

]
NP

iter +NiterLR
2
}

where ND
iter, N

P
iter, Niter denote the number of iterations for the

Dykstra algorithm involved in the variability projection (28),

the PALM algorithm and the endmember update respectively.

To be more explicit, the computation time for one image of

size 100× 100 composed of L = 173 bands is approximately

6 s for a MATLAB implementation with an Intel(R) Core(TM)

i5-4670 CPU @ 3.40GHz. Note that the PALM iterations

Fig. 1. Reference endmembers (red lines) and the corresponding instances
under spectral variability (blue lines) involved in the synthetic HS images.

TABLE II
PARAMETERS USED IN THE EXPERIMENTS.

Synthetic data Real data

σ2 1 1

κ2 0.1 0.01

α 10−4 0

β 10−3 10−4

γ 3× 10−5 0

ND
iter 50 50

NP
iter 50 50

Niter 50 50

Nepochs 10 10
ξ 0.98 0.98

(Algo. 2) and the endmember updates (Algo. 3) can be

parallelized if needed due to the separability of the objective

function f chosen (separability with respect to the column of

the abundance matrix, and with respect to the rows of the

endmember and variability matrices).

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers an HS image sequence composed of

10 images of size 98 × 102, each image composed of 173
bands. The images correspond to linear mixtures of 3, 6 and 10

endmembers affected by smooth time-varying variability. The

synthetic abundance maps of this scenario vary smoothly from

one image to another. Note that the pure pixel assumption is

not satisfied for all images of the experiment with R = 3
endmembers in order to assess the algorithm performance in

a challenging scenario. The synthetic linear mixtures have

been corrupted by additive white Gaussian noise to ensure

a resulting signal-to-noise ratio of SNR = 30 dB. Additional

results for mixtures corrupted by colored Gaussian noise are

available in [25, App. D].

In order to introduce controlled spectral variability, the

endmembers involved in the mixtures have been generated

using the product of reference endmembers with randomly

generated piecewise-affine functions as in [7]. The corre-

sponding perturbed endmembers used in the experiment are
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1.00 / 36 0.97 / 12 0.91 / 0 0.83 / 0 0.72 / 0 0.61 / 0 0.51 / 0 0.42 / 0 0.36 / 0 0.33 / 0

Fig. 2. Abundance maps of the first endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

0.33 / 0 0.36 / 0 0.42 / 0 0.51 / 0 0.61 / 0 0.72 / 0 0.83 / 0 0.91 / 0 0.97 / 1718 1.00 / 1917

Fig. 3. Abundance maps of the second endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

depicted in Fig. 1. Note that different affine functions have

been considered at each time instant for each endmember.

A. Compared methods

The results of the proposed algorithm have been compared

to those obtained with several classical linear unmixing meth-

ods performed individually on each image of the time series.

The methods are recalled below with their most relevant im-

plementation details. All the methods requiring an appropriate

initialization have been initialized with VCA/FCLS.

1) VCA/FCLS (no variability): for each image, the end-

members are first extracted using the vertex component

analysis (VCA) [12] which requires pure pixels to be

present in the analyzed images. The abundances are then

estimated for each pixel by solving a Fully Constrained

Problem (FCLS) with ADMM [14];

2) SISAL/FCLS (no variability): the endmembers are first

extracted using the simplex identification via split aug-

mented Lagrangian (SISAL) [15]. Note that the pure pixel

assumption is not required to apply this method. The

tolerance for the stopping rule has been set to 10−3. The

abundances are then estimated for each pixel by FCLS;

3) ℓ1/2 NMF (no variability): the algorithm described in

[16] is applied to each image, with a stopping criterion

set to 10−3 and a maximum of 300 iterations. The

regularization parameter has been set as in [16];

4) BCD/ADMM: the algorithm described in [7] is applied

to each image with a stopping criterion set to 10−3. The

endmember regularization recalled in (15) has been used,

with a parameter set to the same value as the one used

for the proposed method. The abundance regularization

parameter (spatial smoothness) has been set to 10−4, and

the variability regularization parameter has been set to 1;

5) Proposed method: endmembers are initialized with VCA

applied to the union of the pixels belonging to the R− 1
convex hull of each image. The abundances are initialized

by FCLS, and the variability matrices are initialized with

all their entries equal to 0. Whenever the algorithm is

applied to a previously processed image, the previous

abundance and variability estimates are taken as a warm-

restart. Algo. 2 (PALM algorithm) is stopped after NP
iter

iterations and the Dykstra algorithm used to compute

the projection in (28) is iterated ND
iter times. Moreover,

Algo. 3 is stopped after Niter iterations. Finally, Algo. 1

is stopped after Nepochs cycles – referred to as epochs –

on the randomly permuted training set to approximately

obtain i.i.d. samples [11]. In particular, the number of cy-

cles Nepochs and sub-iterations Niter have been empirically
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0.33 / 0 0.36 / 0 0.42 / 0 0.51 / 0 0.61 / 0 0.72 / 0 0.83 / 0 0.91 / 0 0.97 / 519 1.00 / 1465

Fig. 4. Abundance maps of the third endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

(a) (b) (c)

(d) (VCA) (e) (VCA) (f) (VCA)

Fig. 5. Estimated endmembers on the synthetic hyperspectral time series
(PLMM endmembers in red with variability in blue dotted lines on the first
line, VCA-extracted endmembers on the second line, SISAL endmembers are
omitted since very similar to those obtained with VCA).

chosen to obtain a compromise between the estimation

accuracy and the implied computational cost. We also

included a constant forgetting factor ξ ∈ (0, 1) in order

to slowly forget the past data. The closer to one ξ is, the

more slowly the past data are forgotten.

The performance of the algorithm has been assessed in

terms of endmember estimation using the average spectral

angle mapper (aSAM) defined as

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT

rm̂r

‖mr‖2‖m̂r‖2

)
(34)

as well as in terms of abundance and perturbation estimation

through the global mean square errors (GMSEs)

GMSE(A) =
1

TRN

T∑

t=1

‖At − Ât‖2F (35)

GMSE(dM) =
1

TLR

T∑

t=1

‖dMt − d̂Mt‖2F. (36)

As a measure of fit, the following reconstruction error (RE)

has been considered

RE =
1

TLN

T∑

t=1

‖Yt − Ŷt‖2F (37)

where Ŷt is the matrix formed of the pixels reconstructed with

the parameters estimated for the image t.

B. Results

The parameters used for the proposed algorithm, which

have been adjusted by cross-validation, are detailed in Table

II. For the dataset associated with mixtures of R = 3
endmembers, the abundance maps obtained by the proposed

method are compared to those of VCA/FCLS in Figs. 2 to

4, whereas the corresponding endmembers are displayed in

Fig. 5. The abundance maps obtained by SISAL/FCLS, ℓ1/2
NMF and BCD/ADMM, somewhat similar to those obtained

by VCA/FCLS, are included in a separate technical report

[25], along with a more detailed version of Table III and

the endmembers extracted by all the unmixing strategies. The

performance of the unmixing methods is finally reported in

Table III, leading to the following conclusions.

• The proposed method is more robust to the absence of

pure pixels in some images than both VCA/FCLS and

SISAL/FCLS. Note that ℓ1/2 NMF and BCD/ADMM

converge to poor local optima, which directly results from

the poor performance of VCA in this specific context.

On the contrary, the estimated abundances obtained with

the proposed method (second line of Figs. 2 to 4) are

closer to the ground truth (first line) than VCA/FCLS

(third line). This observation is confirmed by the results

given in Table III;

• The proposed method provides competitive unmixing

results while allowing temporal endmember variability to

be estimated for each endmember (see Fig. 5);

• The abundance GMSEs and the REs estimated with the

proposed method are lower or comparable to those ob-

tained with VCA/FCLS and SISAL/FCLS applied to each

image individually (see Table III), without introducing

much more degrees of freedom into the underlying model

when compared to BCD/ADMM;

• Even though the performance of the proposed method

degrades with the number of endmembers, the results re-

main better or comparable to those of the other methods.

Whenever an endmember is scarcely present in one of the

images, the proposed method outperforms VCA/FCLS as can

be seen in Figs. 2 to 4. Note that the maximum theoretical

abundance value and the number of pixels whose abundances

are greater than 0.95 are mentioned on the top line of Figs.
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TABLE III
SIMULATION RESULTS ON SYNTHETIC DATA (ASAM(M) IN (°),

GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 , TIME IN (S)).

aSAM(M) GMSE(A) GMSE(dM) RE time

R
=

3

VCA/FCLS 15.76 4.22 / 0.413 1

SISAL/FCLS 15.88 3.68 / 0.375 5
ℓ1/2 NMF 18.54 8.20 / 0.123 226

BCD/ADMM 15.91 3.47 4.03 0.282 379
Proposed 1.88 0.23 1.02 0.375 168

R
=

6

VCA/FCLS 2.14 0.14 / 1.48 4
SISAL/FCLS 1.67 0.83 / 1.20 5
ℓ1/2 NMF 3.41 0.45 / 1.53 332

BCD/ADMM 2.27 0.29 1.31 1.20 1066
Proposed 1.49 0.17 2.69 1.22 344

R
=

1
0

VCA/FCLS 3.52 7.24 / 4.63 5
SISAL/FCLS 9.53 3.32 / 1.67 6
ℓ1/2 NMF 5.58 7.03 / 3.90 279

BCD/ADMM 3.27 6.45 7.2 1.70 735
Proposed 2.83 0.43 8.9 1.99 204

2 to 4, to assess the difficulty of recovering each endmember

in each image. This result was expected, since VCA is a pure

pixel-based unmixing method.

C. Hyper-parameter influence on the reconstruction error

Considering the significant number of hyper-parameters to

be tuned (i.e., α, β, γ, σ, κ), a full sensitivity analysis is a chal-

lenging task, which is further complexified by the non-convex

nature of the problem considered. To alleviate this issue, each

parameter has been individually adjusted while the others

were set to a priori reasonable values (i.e., (α, β, γ, σ2, κ2) =
(10−2, 10−4, 10−4, σ̂2, 10−3), where σ̂2 = 0.0372 denotes the

theoretical average energy of the variability introduced in the

synthetic dataset used for this analysis). The appropriateness

of a given range of values has been evaluated in terms of

the RE of the recovered solution. The results reported in Fig.

6 suggest that the proposed method is relatively robust to the

choice of the hyper-parameters. More precisely, as can be seen

in Figs. 6b and 6c, only β and γ may induce oscillations (of

very small amplitude) in the RE. Based on this analysis, it is

interesting to note that the interval [2 × 10−3, 10−2] can be

chosen in practice to obtain reasonable reconstruction errors.

To conclude, the two following remarks can be made on the

choice of σ and κ:

• the value chosen for σ results from an empirical compro-

mise between the risk to capture noise into the variability

terms (σ too large) and the risk to lose information (σ
too small). The sensitivity analysis conducted in Fig. 6d

shows that σ2 ∈ [10−1, 1] provides interesting results for

this experiment;

• κ should be set to a value ensuring that M reflects the

average spectral behavior of the perturbed endmembers.

Fig. 6e shows that κ2 ∈ [10−3, 1] provides interesting

results for the synthetic dataset used in the experiment.

V. EXPERIMENT WITH REAL DATA

A. Description of the dataset

The proposed algorithm has been applied to real HS images

acquired by the Airborne Visible Infrared Imaging Spectrom-

eter (AVIRIS) over the Lake Tahoe region (California, United

(a) (b)

(c) (d)

(e)
Fig. 6. Sensitivity analysis of the reconstruction error RE with respect to
the tuning of the algorithm hyper-parameters (σ̂2 = 0.0372 denotes the
theoretical average energy of the variability introduced in the synthetic dataset
used for this analysis).

States of America) between 2014 and 20153. Water absorption

bands were removed from the 224 spectral bands, leading to

173 exploitable bands. In absence of any ground truth, the

sub-scene of interest (150 × 110), partly composed of a lake

and a nearby field, has been unmixed with R = 3, 4 and

5 endmembers to obtain a compromise between the results

of HySime [26], those of the recently proposed eigen-gap

approach (EGA) [27] (see Table IV), and the consistency of

the resulting abundance maps. The parameters used for the

proposed approach are given in Table II, and the other methods

have been run with the same parameters as in Section V. Note

that a 4 × 4 patch composed of outliers has been manually

removed from the last image of the sequence prior to the

unmixing procedure.

B. Results

Since no ground truth is available, the algorithm per-

formance is evaluated in terms of the reconstruction error

defined in (37). Only the more consistent abundance maps

and endmembers obtained for R = 3 are presented in

Figs. 8 to 11 due to space constraints. Complementary re-

sults are available in [25]. The proposed method provides

comparable reconstruction errors (see Table V), yields more

consistent abundance maps when compared to VCA/FCLS and

SISAL/FCLS especially for the soil and the vegetation for a

somewhat reasonable computational cost. In particular, note

that the estimated vegetation abundance map of the fourth

image depicted in Fig. 10 (area delineated in red) presents

3The images used in this experiment are freely available from the online
AVIRIS flight locator tool at http://aviris.jpl.nasa.gov/alt locator/.
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(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015

Fig. 7. Scenes used in the experiment, given with their respective acquisition date.

Fig. 8. Water abundance maps (proposed method on the first line, VCA/FCLS
on the second line, SISAL/FCLS on the third line).

Fig. 9. Soil abundance maps (proposed method on the first line, VCA/FCLS
on the second line, SISAL/FCLS on the third line).

significant errors when visually compared to the corresponding

RGB image in Fig. 7d. These errors can be explained by the

fact that the water endmember extracted by VCA has been

split into two parts as can be seen in Figs. 11d and 11f (see

signatures given in black). Indeed, the VCA algorithm cannot

detect the scarcely present vegetation. On the contrary, the

joint exploitation of multiple images enables the faint traces

of dry vegetation to be captured. Albeit impacted by the results

of VCA/FCLS (used as initialization), the performance of ℓ1/2
NMF and BCD/ADMM remains satisfactory on each image of

the sequence since they tend to correct the endmember errors

induced by VCA. However, ℓ1/2 NMF produces undesirable

endmembers with an amplitude significantly greater than 1 on

the 4th image (Fig. 7d). Besides, BCD/ADMM yields very low

reconstruction errors at the price of a computational cost which

may become prohibitive for extended image sequences. The

figures related to ℓ1/2 NMF and BCD/ADMM are available

Fig. 10. Vegetation abundance maps (proposed method on the first line,
VCA/FCLS on the second line, SISAL/FCLS on the third line). The region
delineated in red, where almost no vegetation is supposed to be present, reveals
that the water endmember extracted by VCA has been split into two parts.
This observation is further confirmed in Figs. 11d and 11f.

TABLE IV
ENDMEMBER NUMBER R ESTIMATED ON EACH IMAGE OF THE REAL

DATASET BY HYSIME [26] AND EGA [27].

04
/1

0/
20

14

06
/0

2/
20

14

09
/1

9/
20

14

11
/1

7/
20

14

04
/2

9/
20

15

HySime [26] 16 21 19 21 22
EGA [27] 3 5 4 3 3

in the associated report [25] due to space constraints.

Furthermore the instantaneous variability energy (computed

as ‖dmrt‖22/L for r = 1, . . . , R and t = 1 . . . , T ) can reveal

which endmember deviates the most from its average spectral

behavior. In this experiment, the soil and the vegetation

signatures – which seem to vary the most over time (see

Fig. 7) – are found by the proposed method to be affected

by the most significant variability level (see Table VI). In

this experiment, a significant increase can be observed in the

endmember variability energy over the last three images of

the sequence (see Table VI), suggesting that the endmembers

are apparently better represented in the two first images of the

sequence (see Fig. 7). This observation suggests the proposed

method captures the average endmember spectral behavior and

enables the time at which the greatest spectral changes occur to

be identified. However, a detailed analysis of this observation

is out of the scope of the present paper.
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(a) Water (b) Soil (c) Vegetation

(d) Water (VCA) (e) Soil (VCA) (f) Vegetation (VCA)

(g) Water (SISAL) (h) Soil (SISAL) (i) Vegetation (SISAL)

Fig. 11. Endmembers and variability (endmembers in red lines, variability in
blue dashed lines) recovered by the proposed method on the first line, VCA-
extracted endmembers on the second line, SISAL-extracted endmembers on
the third line). The endmembers given in black on the second line correspond
to the endmembers identified by VCA on the image 7d, where the water
endmember has been split into two parts (see Figs. 11d and 11f).

TABLE V
SIMULATION RESULTS ON REAL DATA (RE ×10−4).

RE time (s)

R
=

3

VCA/FCLS 12.7 2

SISAL/FCLS 0.87 3
ℓ1/2 NMF 3.83 156

BCD/ADMM 0.37 2449
Proposed 1.04 134

R
=

4

VCA/FCLS 43.8 2

SISAL/FCLS 0.35 3
ℓ1/2 NMF 16.0 163

BCD/ADMM 0.27 4396
Proposed 0.76 126

R
=

5

VCA/FCLS 63.9 2

SISAL/FCLS 0.17 4
ℓ1/2 NMF 14.6 174

BCD/ADMM 0.098 12511
Proposed 0.17 128

VI. CONCLUSION AND FUTURE WORK

This paper introduced an online hyperspectral unmixing

procedure accounting for endmember temporal variability

based on the perturbed linear model considered in [7]. This al-

gorithm was designed to unmix multiple HS images of moder-

ate size, potentially affected by smoothly varying endmember

perturbations. Indeed, the number of spurious local optima of

the cost function used in this paper can significantly increase

with the size of the images and the number of endmem-

bers considered, which is a problem common to many blind

source separation problems (such as the unmixing problem

addressed in this paper). The underlying unmixing problem

was formulated as a two-stage stochastic program solved by

a stochastic approximation algorithm. Simulations conducted

on synthetic and real data enabled the interest of the proposed

TABLE VI
EXPERIMENT WITH REAL DATA FOR R = 3: ENERGY OF THE VARIABILITY

CAPTURED FOR EACH ENDMEMBER AT EACH TIME INSTANT

(‖dmkt‖
2
2/L× 10−5 FOR k = 1, . . . , R, t = 1, . . . , T ).

Water Vegetation Soil

04/10/2014 1.22 9.68 11.51

06/02/2014 1.44 11.85 38.37

09/19/2014 7.29 11.41 9.30
11/17/2014 2.77 21.73 16.55
04/29/2015 0.58 106.03 26.19

approach to be appreciated. Indeed, the proposed method

compared favorably with established approaches performed

independently on each image of the sequence while providing

a relevant variability estimation. Assessing the robustness of

the proposed technique with respect to estimation errors on

the endmember number R and applying the proposed method

to real dataset composed of a larger number of endmembers

are interesting prospects for future work. Possible perspectives

also include the extension of the method to account for spatial

variability and applications to change detection problems. A

distributed unmixing procedure is also under investigation to

solve the resulting high dimensional problem.

APPENDIX A

PROJECTIONS INVOLVED IN THE PARAMETER UPDATES

The projections involved in the PALM algorithm [19] de-

scribed in Algo. 2 are properly defined, since the associated

constraint spaces are closed convex sets. More precisely,

• Dt is closed and convex as the (non-empty) intersection

of two closed balls. The projection onto Dt can be ap-

proximated by the Dykstra algorithm [22], [24]. Besides,

the projection on a Frobenius ball is given by [28]

PBF(X,r)(Y) = X+min

(
1,

r

‖Y −X‖F

)
(Y −X);

(38)
• projecting M onto R

L×R
+ is explicitly given by

P+(M) = max(0L,R,M) (39)

where the max is taken term-wise.

APPENDIX B

DISCUSSION ON ASSUMPTION 3

The Hessian matrix of f(Y,M, ·, ·), denoted by H(A,dM)f ,

is given by

H(A,dM)f =

[
H1 H2

H3 H4

]
(40)

M̃ = (M+ dM) (41)

H1 = IN ⊗ (M̃TM̃), H4 = (AAT)⊗ IL (42)

H3 = HT
2 =

{
IR ⊗

[
−Y + M̃A

]}
SR,N + [A⊗ M̃]. (43)

where SR,L is the perfect shuffle matrix. The block matrix

H(A,dM)f is invertible if, for instance, H1 and its Schur

complement S = H4 −H3H
−1
1 H2 are invertible. In practice,

H1 is generally invertible since M + dM is full column

rank. The invertibility of the Schur complement S can be

ensured via an appropriate regularization term µ
2 ‖A‖2F added

to the original objective f . Indeed, we first note that such a
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perturbation regularizes the Hessian by modifying its diagonal

block H4, replaced by H4 + µI.
Denote by λ1 > λ2 > . . . > λr the ordered eigenvalues

of S, where r denotes the number of distinct eigenvalues. By

the spectral theorem, there exists an orthogonal matrix (with

respect to the canonical euclidean inner product) Q such that

S = QTDQ, where D is a diagonal matrix composed of the

λk. Note that each eigenvalue may have a multiplicity order

greater than 1 with the adopted notations. If there exits k such

that λk = 0, then λk+1 < 0. Adding µ
2 ‖A‖2F to the original

objective function, with µ < |λk+1|, is then sufficient to ensure

the invertibility of the Schur complement

(H4 −H3H
−1
1 H2) + µI = QTDQ+ µI = QT(D+ µI)Q

associated to the new Hessian matrix, thus ensuring its invert-

ibility.

APPENDIX C

CONVERGENCE PROOF

Largely adapted from [11], the following sketch of proof

reduces to an adaptation of [11, Lemma 1, Proposition 1].

From this point, our problem exactly satisfies the assumptions

required to apply the same arguments as in [11, Proposition 2,

Proposition 3], leading to the announced convergence result.

Lemma 1 (Asymptotic variations of Mt [11]). Under As-

sumptions 1 and 2, we have∥∥∥M(t+1) −M(t)
∥∥∥

F
= O

(
1

t

)
almost surely (a.s.). (44)

Proof. According to Assumption 1, ĝt is strictly convex with

a Hessian lower-bounded by a scalar µM > 0. Consequently,

ĝt satisfies the second-order growth condition

ĝt(M
(t+1))− ĝt(M

(t)) ≥ µM

∥∥∥M(t+1) −M(t)
∥∥∥
2

F
. (45)

Besides, since M ∈ [0, 1]L×R, we have ‖M‖F ≤
√
LR.

Hence ĝt is Lipschitz continuous with constant ct =
1
t

(
‖Dt‖F +

√
LR ‖Ct‖F

)
+βcΨ. Indeed, given two matrices

M1,M2 ∈ [0, 1]L×R, we have

|ĝt(M1)− ĝt(M2)| ≤ β
∣∣Ψ(M1)−Ψ(M2)

∣∣+
1

t

∣∣∣∣
1

2
〈MT

1M1 −MT
2M2,Ct〉 − 〈M1 −M2,Dt〉

∣∣∣∣

≤ βcΨ ‖M1 −M2‖F +
1

t
‖M1 −M2‖F ‖Dt‖F

+
1

2t

∥∥MT
1M1 −MT

2M2

∥∥
F
‖Ct‖F

(46)

where Ct and Dt were defined in (11). In addition∥∥MT
1M1 −MT

2M2

∥∥
F
=

1

2
‖(M1 +M2)

T(M1 −M2)

+ (M1 −M2)
T(M1 +M2)‖F

≤ 2
√
LR ‖M1 −M2‖F

(47)

hence
|ĝt(M1)− ĝt(M2)| ≤ ct ‖M1 −M2‖F . (48)

Combining (45) and (48), we have∥∥∥M(t+1) −M(t)
∥∥∥

F
≤ ct

µM

. (49)

Since the data, the abundances and the variability are re-

spectively contained in compact sets, Ct and Dt are (almost

surely) bounded, thus: ct = O
(
1
t

)
a.s.

Proposition 2 (Adapted from [11]). We assume that the

requirements in Assumption 1 to 3 are satisfied. Let (Yt,M)
be an element of Y × M. Let us define

Zt =AR ×Dt (50)

Q(Yt,M) ={(A,dM) ∈ Zt|
∇(A,dM)f(Yt,M,A,dM) = 0} (51)

(A∗
t ,dM

∗
t ) ∈Q(Yt,M) (52)

v(Yt,M) =f
(
Yt,M,A∗

t ,dM
∗
t

)
. (53)

Then

1) the function v is continuously differentiable with respect

to M and ∇Mv(Yt,M) = ∇Mf
(
Yt,M,A∗

t ,dM
∗
t

)
;

2) g defined in (6) is continously differentiable and

∇Mg(M) = EYt

[
∇Mz(Yt,M)

]
;

3) ∇Mg is Lipschitz continuous on M.

Proof. The existence of local minima of f(Yt,M, ·, ·) on Zt

follows from the continuity of f(Yt,M, ·, ·) and the compact-

ness of Zt. This ensures the non-emptiness of Q(Yt,M) and

justifies the definition of (A∗
t ,dM

∗
t ).

Furthermore, Assumption 3 requires the invertibility of the

Hessian matrix H(A,dM)f at the point (Yt,M, (A∗
t ,dM

∗
t )).

The first statement then follows from the implicit function

theorem [29, Theorem 5.9 p.19]: there exist two open subsets

V ⊂ M, W ⊂ Zt and a continuously differentiable function

ϕ : V −→ W such that

(i) (M, (A∗
t ,dM

∗
t )) ∈ V ×W ⊂ M×Zt;

(ii) for all (M̃, (A,dM)) ∈ V ×W , we have

[∇(A,dM)f(Yt, M̃,A,dM) = 0]

⇒ [(A,dM) = ϕ(M̃)];
(54)

(iii) for all M̃ ∈ V ,
∂ϕ

∂M
(M̃) =−H−1

(A,dM)f(Yt, M̃, ϕ(M̃))

∂f

∂M∂(A,dM)
(Yt, M̃, ϕ(M̃)).

(55)

In particular, (M, (A∗
t ,dM

∗
t )) ∈ V × W satisfies (54).

Then, taking the derivative of v(Yt, ·) in M leads to
∂v

∂M
(Yt,M) =

∂f

∂(A,dM)
(Yt,M, ϕ(M))

︸ ︷︷ ︸
=0 since ϕ(M)∈Q(Yt,M)

∂ϕ

∂M
(M)

+
∂f

∂M
(Yt,M, ϕ(M))

(56)

The second statement follows from the continuous differen-

tiability of z(Yt, ·), defined on a compact set.

We finally observe that ‖A∗
t ‖F and ‖dM∗

t ‖F are respec-

tively bounded by a constant independent from Yt (since

(A∗
t ,dM

∗
t ) ∈ AR × Dt). This observation, combined with

the expression of ∇Mf and the compactness of M, leads to

the third claim.
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