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Abstract

Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing an

hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified

signatures may vary spectrally from an image to another due to varying acquisition conditions, thus

inducing possibly significant estimation errors. Against this background, hyperspectral unmixing of

several images acquired over the same area is of considerable interest. Indeed, such an analysis enables the

endmembers of the scene to be tracked and the corresponding endmember variability to be characterized.

Sequential endmember estimation from a set of hyperspectral images is expected to provide improved

performance when compared to methods analyzing the images independently. However, the significant

size of hyperspectral data precludes the use of batch procedures to jointly estimate the mixture parameters

of a sequence of hyperspectral images. Provided that each elementary component is present in at

least one image of the sequence, we propose to perform an online hyperspectral unmixing accounting

for temporal endmember variability. The online hyperspectral unmixing is formulated as a two-stage

stochastic program, which can be solved using a stochastic approximation. The performance of the

proposed method is evaluated on synthetic and real data. A comparison with independent unmixing

algorithms finally illustrates the interest of the proposed strategy.

Index Terms

Hyperspectral imagery, perturbed linear unmixing (PLMM), endmember temporal variability, two-

stage stochastic program, stochastic approximation (SA).
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I. INTRODUCTION

Hyperspectral imagery has known an increasing interest over the past decades due to the significant

spectral information it conveys. Acquired in hundreds of contiguous spectral bands (e.g., from 300 nm to

2600 nm for the AVIRIS sensor), hyperspectral (HS) images facilitate the identification of the elements

composing the imaged scene1. However, the high spectral resolution of these images is mitigated by their

lower spatial resolution, which results in pixel spectra composed of mixtures of reference signatures.

Spectral unmixing consists of determining the reference spectral signatures composing the data – referred

to as endmembers – and their abundance fractions in each pixel according to a predefined mixture model

accounting for several environmental factors (declivity, multiple reflections, ...). Provided microscopic

interactions between the materials of the imaged scene are negligible and the relief of the scene is flat, a

linear mixing model (LMM) is traditionally used to describe the data [1]. However, varying acquisition

conditions such as illumination or natural evolution of the scene may significantly alter the shape and the

amplitude of the spectral signatures acquired, thus affecting the extracted endmembers from an image to

another. In this context, HS unmixing of several images acquired over the same area at different time

instants can be of considerable interest. Indeed, such an analysis enables the endmembers of the scene

and endmember variability to be assessed, thus improving endmember estimation when compared to

independent image analyses performed with any state-of-the-art unmixing method.

So far, spatial variability within a given image has been considered in various models either derived

from a statistical or a deterministic point of view [2]. The first class of methods assumes that the

endmember spectra are realizations of multivariate distributions [3]–[5]. The second class of methods

represents endmember signatures as members of spectral libraries associated with each material (bundles)

[6]. Another recently proposed approach consists in estimating the parameters of an explicit variability

model [7]. To the best of our knowledge, spatio-temporal variability has been analyzed for the first

time in the Bayesian framework proposed in [8]. Another recent contribution similarly resorts to a batch

estimation technique to address spectral unmixing of multi-temporal HS images [9]. HS unmixing using

a significant number of images or several large images precludes the use of batch estimation procedures

as in [8], [9] due to limited memory and computational resources. Since online estimation procedures

enable data to be sequentially incorporated into the estimation process without the need to simultaneously

load all the data into memory, we focus in this paper on the design of an online HS unmixing method

accounting for temporal variability.

1Note that some airborne sensors cover larger wavelength range, while some mounted sensors can offer millimeter spatial

resolutions.
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Since the identified endmembers can be considered as time-varying instances of reference endmembers,

we use the perturbed linear mixing model (PLMM) proposed in [7] to account for spectral variability.

However, inspired by the works presented in [10], [11], we formulate the unmixing problem as a two-stage

stochastic program that allows the model parameters to be estimated online contrary to the algorithm

proposed in [7]. To the best of our knowledge, it is the first time HS unmixing accounting for temporal

variability has been formulated as a two-stage stochastic program and solved using an online2 algorithm.

The paper is organized as follows. The proposed PLMM accounting for temporal variability is intro-

duced in Section II. Section III describes an online algorithm to solve the resulting optimization problem.

Experimental results obtained on synthetic and real data are reported in Sections IV and V respectively.

The results obtained with the proposed algorithm are systematically compared to those obtained with the

vertex component analysis / fully constrained least squares (VCA [12] / FCLS [13], [14]), SISAL [15]

/ FCLS, the ℓ1/2 non-negative matrix factorization (NMF) [16] and the BCD/ADMM algorithm of [7],

each method being independently applied to each image of the sequence. Section VI finally concludes

this work.

II. PROBLEM STATEMENT

A. Perturbed linear mixing model (PLMM)

We consider HS images acquired at T different time instants over the same scene, assuming that at

most R endmembers are present in the resulting time series and that the images share these R common

endmembers. Each endmember does not need to be present in each image, but at least in one image of the

time series. Given an a priori known number of endmembers R, the PLMM consists in representing each

pixel ynt by a linear combination of the R endmembers – denoted by mr – affected by a perturbation

vector dmrt accounting for temporal endmember variability. The proposed model considers the case

where the variability essentially results from the evolution of the scene or from the global acquisition

conditions from one image to another. As a first approximation, the variability is assumed to be constant

on each image. The resulting PLMM can thus be written

ynt =

R∑

r=1

arnt

(
mr + dmrt

)
+ bnt (1)

for n = 1, . . . , N and t = 1, . . . , T , where ynt denotes the nth image pixel at time t, mr is the rth

endmember, arnt is the proportion of the rth endmember in the nth pixel at time t, and dmrt denotes

2The terminology “online” is slightly abusive in our context since the time difference between two consecutive images can

extend to several months.
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the perturbation of the rth endmember at time t. Finally, bnt models the noise resulting from the data

acquisition and the modeling errors. In matrix form, the PLMM (1) can be written as

Yt = (M+ dMt)At +Bt (2)

where Yt = [y1t, . . . ,yNt] is an L × N matrix containing the pixels of the tth image, M denotes an

L× R matrix containing the endmembers, At is an R ×N matrix composed of the abundance vectors

ant, dMt is an L×R matrix whose columns are the perturbation vectors associated with the tth image,

and Bt is an L×N matrix accounting for the noise at time instant t. The non-negativity and sum-to-one

constraints usually considered to reflect physical considerations are

At � 0R,N , AT
t 1R = 1N , ∀t = 1, . . . , T

M � 0L,R

(3)

where � denotes a component-wise inequality. We also consider the following assumptions on the inherent

variability of the observed scenes

‖dMt‖2F ≤ σ2, for t = 1, . . . , T (4)

∥∥∥∥∥
1

T

T∑

t=1

dMt

∥∥∥∥∥

2

F

≤ κ2 (5)

where σ and κ are fixed positive constants, and ‖·‖F denotes the Frobenius norm. These two constraints

can be interpreted in terms of the feasible domain of M and dMt. Indeed, introducing the perturbed

endmembers Mt , M+ dMt, the constraint (4) can be reformulated as

‖dMt‖2F = ‖M−Mt‖2F ≤ σ2 ⇔ M ∈
T⋂

t=1

BF(Mt, σ)

where BF(Mt, σ) is the ball of center Mt and of radius σ. This highlights the fact that the number

of constraints imposed on the endmembers increases with T , i.e., the more images are processed, the

more information can be extracted in terms of endmember signatures. On the other hand, (5) constrains

the perturbed endmembers to be distributed around the true endmembers, i.e., the endmember signatures

M should reflect the average behavior of the perturbed endmembers Mt in the sequence. In practice,

setting σ to a reasonable value is desirable from a modeling point of view, since very large perturbations

should probably be interpreted as outliers, thus leading to the removal of the corrupted elements from

the unmixing process. Note however that the algorithm proposed in Section III-B is independent from

any consideration on the values of σ2 and κ2.

Remark. In practice, HS unmixing is performed on reflectance data, hence Yt ∈ [0, 1]L×N . The abun-

dance sum-to-one and non-negativity constraints further imply M ∈ [0, 1]L×R. In fact, the compactness
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of both the data support and the space associated with the constraints relative to the endmembers –

denoted by Y and M respectively – is crucial for the convergence result given in Paragraph III-C. In

addition, the images Yt can be assumed to be independent and identically distributed (i.i.d.) since these

images have been acquired by possibly different sensors at different time instants.

B. Problem formulation

In order to design an online estimation algorithm, the model (1) combined with the constraints (3) can

be used to formulate a two-stage stochastic program consisting in estimating the endmembers present in

the image sequence. Since only the endmembers are supposed to be commonly shared by the different

images, we propose to minimize a marginal cost function obtained by marginalizing an instantaneous

cost function over the abundances and the variability terms, so that the resulting cost only depends on

the endmembers. Assuming the expectations are well-defined, we consider the following optimization

problem

min
M∈M

g(M) = EY,A,dM

[
f
(
Y,M,A,dM

)]
(6)

where M = [0, 1]L×R. We propose to define the function f of (6) as

f(Y,M,A,dM) =
1

2
‖Y − (M+ dM)A‖2F

+ αΦ(A) + βΨ(M) + γΥ(dM)

(7)

where Φ,Ψ and Υ denote appropriate penalization terms on the abundances, the endmembers and the

variability with

A ∈ AR =
{
A ∈ R

R×N
∣∣an ∈ SR, for n = 1, . . . , N

}
(8)

dM ∈ D = BF(0, σ) ∩
{
dM

∣∣ ∥∥E
[
dM

]∥∥
F
≤ κ

}
. (9)

The parameters α, β and γ ensure a trade-off between the data fitting term and the penalties. In practice,

g is approximated at time t by an upper bound ĝt given by a stochastic approximation [11]

ĝt(M) =
1

2t

t∑

i=1

‖Yi − (M+ dMi)Ai‖2F + βΨ(M)

=
1

t

t∑

i=1

(
1

2
‖MAi‖2F − 〈MAi,Yi − dMiAi〉+

1

2
‖Yi − dMiAi‖2F

)
+ βΨ(M)

=
1

t

t∑

i=1

(
1

2
〈MAi,MAi〉 − 〈MAi,Yi − dMiAi〉

)
+ βΨ(M) + c

=
1

t

t∑

i=1

(
1

2
〈MTM,AiA

T
i 〉 − 〈M, (Yi − dMiAi)A

T
i 〉
)
+ βΨ(M) + c

=
1

t

[
1

2
Tr(MTMCt) + Tr(MTDt)

]
+ βΨ(M) + c

(10)
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where 〈X,Y〉 = Tr(XTY), c is a constant independent from M and

c =
1

2t

t∑

i=1

‖Yi − dMiAi‖2F , Ct =

t∑

i=1

AiA
T
i , Dt =

t∑

i=1

(dMiAi −Yi)A
T
i . (11)

Besides, D is approximated by

Dt = BF(0, σ) ∩ {dM | ‖dM+Et−1‖F ≤ tκ} (12)

with

Et =

t∑

i=1

dMi. (13)

Examples of penalizations that will be considered in this study are detailed in the following paragraphs.

1) Abundance penalization: In this work, the abundance penalization Φ has been chosen to promote

temporally smooth abundances – in the ℓ2-norm sense – between two consecutive images, leading to

Φ(At) =
1

2
‖At −At−1‖2F . (14)

As long as Φ satisfies the regularity condition given in Paragraph III-C, any other type of prior knowledge

relative to the abundances can be incorporated into the proposed method.

2) Endmember penalization: Classical endmember penalizations found in the literature consist in

constraining the size of the (R − 1)-simplex whose vertices are the endmembers. In this paper, we

consider the mutual distance between each endmember introduced in [17], [18], defined as

Ψ(M) =
1

2

R∑

i=1

(
R∑

j=1

j 6=i

‖mi −mj‖22

)
=

1

2

R∑

r=1

‖MGr‖2F (15)

where

Gr = −IR + er1
T
R (16)

and er denotes the rth canonical basis vector of RR.

3) Variability penalization: Assuming that the spectral variation between two consecutive images is a

priori temporally smooth, we consider the following ℓ2-norm penalization

Υ(dMt) =
1

2
‖dMt − dMt−1‖2F . (17)

Similarly, any other type of prior knowledge relative to the variability can be considered as long as Υ

satisfies the regularity condition given in Paragraph III-C.
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Algorithm 1: Online unmixing algorithm.

Data: M(0), A0, dM0, α > 0, β > 0, γ > 0, ξ ∈]0, 1]

begin

C0 ← 0R,R;

D0 ← 0L,R;

E0 ← 0L,R;

for t = 1 to T do

a Random selection of an image Yt (random permutation of the image sequence);

// Abundance and variability estimation by PALM [19], cf. §III-B1

b (At,dMt) ∈ argmin
(A,dM)∈AR×Dt

f(Yt,M
(t),A,dM);

Ct ← ξCt−1 +AtA
T
t ;

Dt ← ξDt−1 + (dMtAt −Yt)A
T
t ;

Et ← ξEt−1 + dMt;

// Endmember update [11, Algo. 2], cf. §III-B2

c M(t) ← argmin
M∈M

ĝt(M);

Result: M(T ), (At)t=1,··· ,T , (dMt)t=1,··· ,T

III. A TWO-STAGE STOCHASTIC PROGRAM

A. Two-stage stochastic program: general principle

The following lines briefly recall the main ideas presented in the introduction of [10]. A two-stage

stochastic program is generally expressed as

min
M

EY,Z

[
f
(
Y,M,Z

)]
s.t. M ∈ M, with Z ∈ Z. (18)

At the first stage, M must be chosen before any new data Y is available. At the second-stage, when M

has been fixed and a new data is acquired, the second-stage variable Z is computed as the solution (if it

is unique and well defined) to the optimization problem

min
Z∈Z

f(Y,M,Z). (19)

Given an independent and identically distributed (i.i.d) T -sample (Y1, . . . ,YT ), problem (18) can be

approximated by the sample average approximation (SAA)

min
M,Z1,...,ZT

1

T

T∑

t=1

f(Yt,M,Zt), s.t. M ∈ M, Zt ∈ Z. (20)
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Moreover, when the second-stage (19) admits a unique solution, (20) can be rewritten as

min
M∈M

1

T

T∑

t=1

h(Yt,M) (21)

h(Yt,M) = min
Z∈Z

f(Yt,M,Z) (22)

which is the SAA corresponding to

min
M∈M

EY

[
h(Y,M)

]
(23)

h(Y,M) = min
Z∈Z

f
(
Y,M,Z

)
(24)

where the two stages explicitly appear. However, f defined in (7) is non-convex with respect to Z =

(A,dM), where Z = AR×D. Thus, problem (19) does not admit a unique global minimum, and existing

algorithms will at most provide a critical point of f(Y,M, ·)+ιZ , where ιZ denotes the indicator function

of the set Z . In this specific case, a new convergence framework based on a generalized equation has

been developed in [10]. Such a framework enables a convergence result in terms of a critical point

{M,Z1, . . . ,ZT } of (20) to be obtained. However, the significant size of the SAA problem (20) in

our case is generally too expensive from a computational point of view. To alleviate this problem, we

propose to slightly adapt the work developed in [11] to propose an online estimation algorithm described

in Algo. 1. This algorithm has the same convergence property as [11] provided the non-convex function

f(Y,M, ·) + ιZ exclusively admits locally unique critical points. Further details are given in Paragraph

III-C.

B. Parameter estimation

Whenever an image Yt has been received, the abundances and variability are estimated by a proximal

alternating linearized minimization (PALM) algorithm [19], which is guaranteed to converge to a critical

point (A∗,dM∗) of f(Yt,M, ·, ·) + ιAR×Dt
. The endmembers are then updated by proximal gradient

descent steps, similarly to [11]. Further details on the projections involved in this section are included in

Appendix A.

1) Abundance and variability estimation: A direct application of [19] under the constraints (3) leads

to the following abundance update rule

A
(k+1)
t = PAR

(
A

(k)
t − 1

L
(k)
1t

∇Af(Yt,M
(t),A

(k)
t ,dM

(k)
t )

)
(25)

where L
(k)
1t is the Lipschitz constant of ∇Af(Yt,M

(t), ·,dM(k)
t ) and

∇Af(Yt,M
(t),At,dMt) = α(At −At−1)

+ (M(t) + dMt)
T
[
(M(t) + dMt)At −Yt

] (26)
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Algorithm 2: Abundance and variability estimation using PALM.

Data: Yt,M
(t),A

(0)
t ,dM

(0)
t ,Et−1

begin

k ← 0;

while stopping criterion not satisfied do

// Abundance update

A
(k+1)
t ← Update

(

A
(k)
t

)

; // cf. (25)

// Variability update

dM
(k+1)
t ← Update

(

dM
(k)
t

)

; // cf. (28)

k ← k + 1;

At ← A
(k)
t , dMt ← dM

(k)
t ;

Result: (At,dMt)

L
(k)
1t =

∥∥∥(M(t) + dM
(k)
t )T(M(t) + dM

(k)
t ) + αIR

∥∥∥
F
. (27)

Note that the projection PAR
can be exactly computed using the algorithms proposed in [20], [21].

Similarly, the update rule for the variability terms is

dM
(k+1)
t =

PDt

(
dM

(k)
t − 1

L
(k)
2t

∇dMf(Yt,M
(t),A

(k+1)
t ,dM

(k)
t )

)
(28)

where L
(k)
2t is the Lipschitz constant of ∇dMf(Yt,M

(t),A
(k+1)
t , ·) and

∇dMf(Yt,M
(t),At,dMt) = γ(dMt − dMt−1)

+
[
(M(t) + dMt)At −Yt

]
AT

t

(29)

L
(k)
2t =

∥∥∥A(k+1)
t A

(k+1)T
t + γIR

∥∥∥
F
. (30)

Note that the projection PDt
can be efficiently approximated using the Dykstra algorithm (see [22]–[24]).

The resulting algorithm is summarized in Algo. 2.

2) Endmember estimation: Similarly to III-B1, a direct application of the method detailed in [11],

[19] yields

M(t,k+1) = P+

(
M(t,k) − 1

L3t
∇Mĝt(M

(t,k))

)
(31)



10

Algorithm 3: Endmember estimation.

Data: M(t,0) = M(t−1),Ct,Dt

begin

k ← 0;

while stopping criterion not satisfied do

// Endmember update

M(t,k+1) ← Update
(

M(t,k)
)

; // cf. (31)

k ← k + 1;

M(t) ←M(t,k);

Result: M(t)

where P+ is the projector on {X|X � 0L,R} and L3t denotes the Lipschitz constant of ∇Mĝt(M
(t,k)).

Note that

∇Mĝt(M) = M

(
1

t
Ct + β

R∑

k=1

GkG
T
k

)
− 1

t
Dt (32)

L3t =

∥∥∥∥∥
1

t
Ct + β

∑

k

GkG
T
k

∥∥∥∥∥
F

. (33)

The resulting algorithm is summarized in Algo. 3.

C. Convergence guarantee

To ensure the convergence of the generated endmember sequence (M(t))t towards a critical point of

the problem (18), we make the following assumptions.

Assumption 1. The quadratic functions ĝt are strictly convex and admit a Hessian matrix lower-bounded

in norm by a constant µM > 0.

Assumption 2. The penalty functions Φ, Ψ and Υ are gradient Lipschitz continuous with Lipschitz

constant cΦ, cΨ and cΥ respectively. In addition, Φ and Υ are assumed to be twice continuously

differentiable.

Assumption 3. The function f(Yt, ·, ·, ·) is twice continuously differentiable. The Hessian matrix of

f(Yt,M, ·, ·) – denoted by H(A,dM)f – is invertible at each critical point (A∗,dM∗) ∈ Q(Yt,M).

In practice, Assumption 1 may be enforced by adding a penalization term µM

2 ‖M‖2F to the objective

function ĝt, where µM is a small positive constant. Note that µM is only a technical guarantee used

in the convergence proof reported in Appendix C, which should not be computed explicitly to be able
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to run the algorithm. Assumption 2 is only included here for the sake of completeness, in case other

penalizations than those given in Section II are considered. Indeed, this assumption is obviously satisfied

by the penalizations mentioned in this work. Finally, Assumption 3, which is crucial to Proposition 1, is

further discussed in Appendix B to ease the reading of this paper.

Slightly adapting the arguments used in [11] to our problem, the convergence property summarized in

Proposition (1) can be obtained.

Proposition 1 (Convergence of (M(t))t, [11]). Under the assumptions 1,2 and 3, the distance between

M(t) and the set of critical points of the hyperspectral unmixing problem (6) converges almost surely to

0 when t tends to infinity.

Proof. See Appendix C.

D. Computational complexity

Dominated by matrix-product operations, the per image overall complexity of the proposed method is

if the order

O
{[

LR(N +ND
iter) +R2(L+N)

]
NP

iter +NiterLR
2
}

where ND
iter, N

P
iter, Niter denote the number of iterations for the Dykstra algorithm involved in the variability

projection (28)), the PALM algorithm and the endmember update respectively. To be more explicit, the

computation time for one image of size 100 × 100 composed of L = 173 bands is approximately 6 s

for a MATLAB implementation with an Intel(R) Core(TM) i5-4670 CPU @ 3.40GHz. Note that the

PALM iterations (Algo. 2) and the endmember updates (Algo. 3) can be parallelized if needed due to the

separability of the objective function f chosen (separability with respect to the column of the abundance

matrix, and with respect to the rows of the endmember and variability matrices).

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers an HS image sequence composed of 10 images of size 98 × 102, each image

composed of 173 bands. The images correspond to linear mixtures of 3, 6 and 10 endmembers affected

by smooth time-varying variability. The synthetic abundance maps of this scenario vary smoothly from

one image to another. Note that the pure pixel assumption is not satisfied for all images of the experiment

with R = 3 endmembers in order to assess the algorithm performance in a challenging scenario. The

synthetic linear mixtures have been corrupted by additive white Gaussian noise to ensure a resulting

signal-to-noise ratio of SNR = 30dB. Additional results with mixtures corrupted by colored Gaussian

noise is available in Appendix D.
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In order to introduce controlled spectral variability, the endmembers involved in the mixtures have

been generated using the product of reference endmembers with randomly generated piecewise-affine

functions as in [7]. The corresponding perturbed endmembers used in the experiment are depicted in Fig.

1. Note that different affine functions have been considered at each time instant for each endmember.

A. Compared methods

The results of the proposed algorithm have been compared to those obtained with several classical

linear unmixing methods performed individually on each image of the time series. The methods are

recalled below with their most relevant implementation details. All the methods requiring an appropriate

initialization have been initialized with VCA/FCLS.

1) VCA/FCLS (no variability): for each image, the endmembers are first extracted using the vertex

component analysis (VCA) [12] which requires pure pixels to be present in the analyzed images.

The abundances are then estimated for each pixel by solving a Fully Constrained Problem (FCLS)

by ADMM [14];

2) SISAL/FCLS (no variability): the endmembers are first extracted using the simplex identification

via split augmented Lagrangian (SISAL) [15]. Note that the pure pixel assumption is not required

by this method. The tolerance for the stopping rule has been set to 10−3. The abundances are then

estimated for each pixel by FCLS;

3) ℓ1/2 NMF (no variability): the algorithm described in [16] is applied to each image, with a stopping

criterion set to 10−3 and a maximum of 300 iterations. The regularization parameter has been set

as recommended in [16];

4) BCD/ADMM: the algorithm described in [7] is applied to each image with a stopping criterion

set to 10−3. The endmember regularization recalled in (15) has been used, with a parameter set to

the same value as the one used for the proposed method. The abundance regularization parameter

(spatial smoothness) has been set to 10−4, and the variability regularization parameter has been set

to 1;

5) Proposed method: endmembers are initialized with VCA applied to the union of the pixels belonging

to the R−1 convex hull of each image. The abundances are initialized by FCLS, and the variability

matrices are initialized with all their entries equal to 0. Whenever the algorithm is applied to a

previously processed image, the previous abundance and variability estimates are taken as a warm-

restart. Algo. 2 (PALM algorithm) is stopped after NP
iter iterations and the Dykstra algorithm used

to compute the projection in (28) is iterated ND
iter times. Moreover, Algo. 3 is stopped after Niter

iterations. Finally, Algo. 1 is stopped after Nepochs cycles – referred to as epochs – on the randomly
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permuted training set to approximately obtain i.i.d. samples [11]. In particular, the number of cycles

Nepochs and sub-iterations Niter have been empirically chosen to obtain a compromise between

the estimation accuracy and the implied computational cost. The influence of the regularization

parameters α, β, γ, σ, κ on the reconstruction error is investigated in Appendix IV-C. We also

included a constant forgetting factor ξ ∈ (0, 1) in order to slowly forget the past data. The closer to

one ξ is, the more slowly the past data are forgotten.

The performance of the algorithm has been assessed in terms of endmember estimation using the

average spectral angle mapper (aSAM) defined as

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT

rm̂r

‖mr‖2‖m̂r‖2

)
(34)

as well as in terms of abundance and perturbation estimation through the global mean square errors

(GMSEs)

GMSE(A) =
1

TRN

T∑

t=1

‖At − Ât‖2F (35)

GMSE(dM) =
1

TLR

T∑

t=1

‖dMt − d̂Mt‖2F. (36)

As a measure of fit, the following reconstruction error (RE) has been considered

RE =
1

TLN

T∑

t=1

‖Yt − Ŷt‖2F (37)

(38)

where Ŷ is the matrix formed of the pixels reconstructed with the estimated parameters.

B. Results

The parameters used for the proposed algorithm, which have been adjusted by cross-validation, are

detailed in Table II. For the dataset composed of mixtures of 3 endmembers, the abundance maps obtained

by the proposed method are compared to those of VCA/FCLS in Figs. 3 to 5, whereas the corresponding

endmembers are displayed in Fig. 6. The abundance maps obtained by SISAL/FCLS, ℓ1/2 NMF and

BCD/ADMM, somewhat similar to those obtained by VCA/FCLS, are included in a separate technical

report [25], along with a more detailed version of Table III and the endmembers extracted by all the

unmixing strategies. The performance of the unmixing methods is finally reported in Tables III, IV and

V leading to the following conclusions.

• The proposed method is more robust to the absence of pure pixels in some images than both

VCA/FCLS and SISAL/FCLS. Note that ℓ1/2 NMF and BCD/ADMM converge to poor local optima,
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which directly results from the poor performance of VCA in this specific context. On the contrary,

the estimated abundances obtained with the proposed method (second line of Figs. 3 to 5) are closer

to the ground truth (first line) than VCA/FCLS (third line). This observation is confirmed by the

results given in Table III;

• The proposed method provides competitive unmixing results while allowing temporal endmember

variability to be estimated for each endmember (see Fig. 6);

• The abundance GMSEs and the REs estimated with the proposed method are lower or comparable

to those obtained with VCA/FCLS and SISAL/FCLS applied to each image individually (see Table

III), without introducing much more degrees of freedom into the underlying model when compared

to BCD/ADMM;

• Even though the performance of the proposed method degrades with the number of endmembers,

the results remain better or comparable to those of the other methods.

Whenever an endmember is scarcely present in one of the images, the proposed method outperforms

VCA/FCLS as can be seen in Figs. 3 to 5. Note that the maximum theoretical abundance value and the

number of pixels whose abundances are greater than 0.95 are mentioned on the top line of Figs. 3 to

5, to assess the difficulty of recovering each endmember in each image. This result was expected, since

VCA is a pure pixel-based unmixing method.

C. Hyper-parameter influence on the reconstruction error

Considering the significant number of hyper-parameters to be tuned (i.e., α, β, γ, σ, κ), a full sensitivity

analysis is a challenging task, which is further complexified by the non-convex nature of the problem

considered. To alleviate this issue, each parameter has been individually adjusted while the others were set

to a priori reasonable values (i.e., (α, β, γ, σ2, κ2) = (10−2, 10−4, 10−4, σ̂2, 10−3), where σ̂2 = 0.0372

denotes the theoretical average energy of the variability introduced in the synthetic dataset used for this

analysis). The appropriateness of a given range of values has been evaluated in terms of the RE of the

recovered solution. The results reported in Fig. 2 tend to suggest that the proposed method is relatively

robust to the choice of the hyper-parameters. More precisely, as can be seen in Figs. 2b and 2c, only β

and γ may induce oscillations (of very small amplitude) in the RE. Based on this analysis, it is interesting

to note that the interval [2 × 10−3, 10−2] can be chosen in practice to obtain reasonable reconstruction

errors.

To conclude, the two following remarks can be made on the choice of σ and κ:

• the value chosen for σ results from an empirical compromise between the risk to capture noise into the

variability terms (σ too large) and the risk to lose information (σ too small). The sensitivity analysis
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conducted in Fig. 2d shows that σ2 ∈ [10−1, 1] provides interesting results for this experiment;

• κ should be set to a value ensuring that M reflects the average spectral behavior of the perturbed

endmembers. Fig. 2e shows that κ2 ∈ [10−3, 1] provides interesting results for the synthetic dataset

used in the experiment.

V. EXPERIMENT WITH REAL DATA

A. Description of the dataset

The proposed algorithm has been applied to real HS images acquired by the Airborne Visible Infrared

Imaging Spectrometer (AVIRIS) over the Lake Tahoe region (California, United States of America)

between 2014 and 20153. Water absorption bands were removed from the 224 spectral bands, leading

to 173 exploitable bands. In absence of any ground truth, the sub-scene of interest (150 × 110), partly

composed of a lake and a nearby field, has been unmixed with R = 3, 4 and 5 endmembers to obtain

a compromise between the results of HySime [26], those of the recently proposed eigen-gap approach

(EGA) [27] (see Table VI), and the consistency of the resulting abundance maps. The parameters used

for the proposed approach are given in Table II, and the other methods have been run with the same

parameters as in Section V. Note that a 4 × 4 patch composed of outliers has been manually removed

from the last image of the sequence prior to the unmixing procedure.

B. Results

Since no ground truth is available, the algorithm performance is evaluated in terms of the reconstruction

error defined in (37). Only the more consistent abundance maps and endmembers obtained for R = 3 are

presented in Figs. 8 to 11. The figures obtained for R = 4 and 5 is available in Appendix E. The proposed

method provides comparable reconstruction errors (see Table VII), yields more consistent abundance

maps when compared to VCA/FCLS and SISAL/FCLS especially for the soil and the vegetation for a

somewhat reasonable computational cost. In particular, note that the estimated vegetation abundance map

of the fourth image depicted in Fig. 10 (area delineated in red) presents significant errors when visually

compared to the corresponding RGB image in Fig. 7d. These errors can be explained by the fact that the

water endmember extracted by VCA has been split into two parts as can be seen in Figs. 11d and 11f

(see signatures given in black). Indeed, the VCA algorithm cannot detect the scarcely present vegetation.

On the contrary, the joint exploitation of multiple images enables the faint traces of dry vegetation to be

3The images used in this experiment are freely available from the online AVIRIS flight locator tool at http://aviris.jpl.nasa.

gov/alt locator/.

http://aviris.jpl.nasa.gov/alt_locator/
http://aviris.jpl.nasa.gov/alt_locator/
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captured. Albeit impacted by the results of VCA/FCLS (used as initialization), the performance of ℓ1/2

NMF and BCD/ADMM remains satisfactory on each image of the sequence since they tend to correct

the endmember errors induced by VCA. However, ℓ1/2 NMF produces undesirable endmembers with an

amplitude significantly greater than 1 on the 4th image (Fig. 7d). Besides, BCD/ADMM yields very low

reconstruction errors at the price of a computational cost which may become prohibitive for extended

image sequences.

Furthermore the instantaneous variability energy (computed as ‖dmrt‖22/L for r = 1, . . . , R and

t = 1 . . . , T ) can reveal which endmember deviates the most from its average spectral behavior. In this

experiment, the soil and the vegetation signatures – which seem to vary the most over time (see Fig. 7)

– are found by the proposed method to be affected by the most significant variability level (see Table

VIII). In this experiment, a significant increase can be observed in the endmember variability energy over

the last three images of the sequence (see Table VIII), suggesting that the endmembers are apparently

better represented in the two first images of the sequence (see Fig. 7). This observation suggests the

proposed method captures the average endmember spectral behavior and enables the time at which the

greatest spectral changes occur to be identified. However, a detailed analysis of this observation is out

of the scope of the present paper.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an online hyperspectral unmixing procedure accounting for endmember temporal

variability based on the perturbed linear model considered in [7]. This algorithm was designed to unmix

multiple HS images of moderate size, potentially affected by smoothly varying endmember perturbations.

Indeed, the number of spurious local optima of the cost function used in this paper can significantly

increase with the size of the images and the number of endmembers considered, which is a problem

common to many blind source separation problems (such as the unmixing problem addressed in this

paper). The underlying unmixing problem was formulated as a two-stage stochastic program solved

by a stochastic approximation algorithm. Simulations conducted on synthetic and real data enabled the

interest of the proposed approach to be appreciated. Indeed, the proposed method compared favorably with

established approaches performed independently on each image of the sequence while providing a relevant

variability estimation. Assessing the robustness of the proposed technique with respect to estimation errors

on the endmember number R and applying the proposed method to real dataset composed of a larger

number of endmembers are interesting prospects for future work. Possible perspectives also include the

extension of the method to account for spatial variability and applications to change detection problems.
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A distributed unmixing procedure is also under investigation to solve the resulting high dimensional

problem.

APPENDIX A

PROJECTIONS INVOLVED IN THE PARAMETER UPDATES

The projections involved in the PALM algorithm [19] described in Algo. 2 are properly defined, since

the associated constraint spaces are closed convex sets. More precisely,

• Dt is closed and convex as the (non-empty) intersection of two closed balls. The projection onto

Dt can be approximated by the Dykstra algorithm [22], [24]. Besides, the projection on a Frobenius

ball is given by [28]

PBF(X,r)(Y) = X+min

(
1,

r

‖Y −X‖F

)
(Y −X); (39)

• projecting M onto R
L×R
+ is explicitly given by

P+(M) = max(0L,R,M) (40)

where the max is taken term-wise.

APPENDIX B

DISCUSSION ON ASSUMPTION 3

The Hessian matrix of f(Y,M, ·, ·), denoted by H(A,dM)f , is given by

H(A,dM)f =


H1 H2

H3 H4


 (41)

M̃ = (M+ dM) (42)

H1 = IN ⊗ (M̃TM̃), H4 = (AAT)⊗ IL (43)

H3 = HT
2 =

{
IR ⊗

[
−Y + M̃A

]}
SR,N + [A⊗ M̃]. (44)

where SR,L is the perfect shuffle matrix defined by

SR,L =
∑

i

∑

j

Eij(R,L)Eij(R,L)T (45)

with Eij(R,L) the element (i, j) of the canonical basis of RR×L. The block matrix H(A,dM)f is invertible

if, for instance, H1 and its Schur complement S = H4 −H3H
−1
1 H2 are invertible. In practice, H1 is
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generally invertible since M+dM is full column rank. The Schur complement of H1 can be computed

more explicitly, leading to

H4 −H3H
−1
1 H2 =

[
(AAT)⊗ (IL − M̃†)

]

−
[
(M̃TM̃)−1 ⊗ (Y − M̃A)(Y − M̃A)T

]

+ 2S
(
SR,L

[
(Y − M̃A)AT ⊗ M̃†

])
(46)

where S (X) denotes the symmetric part of the square matrix X, M̃† is the pseudo-inverse of M̃. The

invertibility of the Schur complement S can be ensured via an appropriate regularization term µ
2 ‖A‖2F

added to the original objective f . Indeed, we first note that such a perturbation regularizes the Hessian

by modifying its diagonal block H4, replaced by H4 + µI.

Let us then denote by λ1 > λ2 > . . . > λr the ordered eigenvalues of S, where r denotes the number

of distinct eigenvalues. By the spectral theorem, there exists an orthogonal matrix (with respect to the

canonical euclidean inner product) Q such that S = QTDQ, where D is a diagonal matrix composed of

the λk. Note that each eigenvalue may have a multiplicity order greater than 1 with the adopted notations.

If there exits k such that λk = 0, then λk+1 < 0. Adding µ
2 ‖A‖2F to the original objective function, with

µ < |λk+1|, is then sufficient to ensure the invertibility of the Schur complement

(H4 −H3H
−1
1 H2) + µI = QTDQ+ µI = QT(D+ µI)Q

associated to the new Hessian matrix, thus ensuring its invertibility.

APPENDIX C

CONVERGENCE PROOF

Largely adapted from [11], the following sketch of proof reduces to an adaptation of [11, Lemma 1,

Proposition 1]. From this point, our problem exactly satisfies the assumptions required to apply the same

arguments as in [11, Proposition 2, Proposition 3], leading to the announced convergence result.

Lemma 1 (Asymptotic variations of Mt [11]). Under Assumptions 1 and 2, we have
∥∥∥M(t+1) −M(t)

∥∥∥
F
= O

(
1

t

)
almost surely (a.s.). (47)

Proof. According to Assumption 1, ĝt is strictly convex with a Hessian lower-bounded by a scalar

µM > 0. Consequently, ĝt satisfies the second-order growth condition

ĝt(M
(t+1))− ĝt(M

(t)) ≥ µM

∥∥∥M(t+1) −M(t)
∥∥∥
2

F
. (48)

Besides, since M ∈ [0, 1]L×R, we have ‖M‖F ≤
√
LR. Hence ĝt is Lipschitz continuous with constant

ct =
1
t

(
‖Dt‖F +

√
LR ‖Ct‖F

)
+ βcΨ. Indeed, given two matrices M1,M2 ∈ [0, 1]L×R, we have
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|ĝt(M1)− ĝt(M2)| ≤ β
∣∣Ψ(M1)−Ψ(M2)

∣∣+
1

t

∣∣∣∣
1

2
〈MT

1M1 −MT
2M2,Ct〉 − 〈M1 −M2,Dt〉

∣∣∣∣

≤ βcΨ ‖M1 −M2‖F +
1

t
‖M1 −M2‖F ‖Dt‖F

+
1

2t

∥∥MT
1M1 −MT

2M2

∥∥
F
‖Ct‖F

(49)

where Ct and Dt were defined in (11). In addition∥∥MT
1M1 −MT

2M2

∥∥
F
=

1

2
‖(M1 +M2)

T(M1 −M2)

+ (M1 −M2)
T(M1 +M2)‖F

≤ 2
√
LR ‖M1 −M2‖F

(50)

hence
|ĝt(M1)− ĝt(M2)| ≤ ct ‖M1 −M2‖F . (51)

Combining (48) and (51), we have ∥∥∥M(t+1) −M(t)
∥∥∥

F
≤ ct

µM

. (52)

Since the data, the abundances and the variability are respectively contained in compact sets, Ct and Dt

are (almost surely) bounded, thus: ct = O
(
1
t

)
a.s.

Proposition 2 (Adapted from [11]). We assume that the requirements in Assumption 1 to 3 are satisfied.

Let (Yt,M) be an element of Y × M. Let us define

Zt =AR ×Dt (53)

Q(Yt,M) ={(A,dM) ∈ Zt|

∇(A,dM)f(Yt,M,A,dM) = 0} (54)

(A∗
t ,dM

∗
t ) ∈Q(Yt,M) (55)

v(Yt,M) =f
(
Yt,M,A∗

t ,dM
∗
t

)
. (56)

Then

1) the function v is continuously differentiable with respect to M and ∇Mv(Yt,M) = ∇Mf
(
Yt,M,A∗

t ,dM
∗
t

)
;

2) g defined in (6) is continously differentiable and ∇Mg(M) = EYt

[
∇Mz(Yt,M)

]
;

3) ∇Mg is Lipschitz continuous on M.

Proof. The existence of local minima of f(Yt,M, ·, ·) on Zt follows from the continuity of f(Yt,M, ·, ·)
and the compactness of Zt. This ensures the non-emptiness of Q(Yt,M) and justifies the definition of

(A∗
t ,dM

∗
t ).

Furthermore, Assumption 3 requires the invertibility of the Hessian matrix H(A,dM)f at the point

(Yt,M, (A∗
t ,dM

∗
t )). The first statement then follows from the implicit function theorem [29, Theorem
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5.9 p.19]: there exist two open subsets V ⊂ M, W ⊂ Zt and a continuously differentiable function

ϕ : V −→ W such that

(i) (M, (A∗
t ,dM

∗
t )) ∈ V ×W ⊂ M×Zt;

(ii) for all (M̃, (A,dM)) ∈ V ×W , we have

[∇(A,dM)f(Yt, M̃,A,dM) = 0]

⇒ [(A,dM) = ϕ(M̃)];

(57)

(iii) for all M̃ ∈ V ,
∂ϕ

∂M
(M̃) =−H−1

(A,dM)f(Yt, M̃, ϕ(M̃))

∂f

∂M∂(A,dM)
(Yt, M̃, ϕ(M̃)).

(58)

In particular, (M, (A∗
t ,dM

∗
t )) ∈ V ×W satisfies (57). Then, taking the derivative of v(Yt, ·) in M

leads to
∂v

∂M
(Yt,M) =

∂f

∂(A,dM)
(Yt,M, ϕ(M))

︸ ︷︷ ︸
=0 since ϕ(M)∈Q(Yt,M)

∂ϕ

∂M
(M)

+
∂f

∂M
(Yt,M, ϕ(M))

(59)

which is equivalent to the first claim.

∇Mv(Yt,M) = ∇Mf(Yt,M, ϕ(M)). (60)

The first claim follows by replacing ϕ(M) = (A∗
t ,dM

∗
t ).

The second statement follows from the continuous differentiability of z(Yt, ·), defined on a compact

set.

We finally observe that ‖A∗
t ‖F and ‖dM∗

t ‖F are respectively bounded by a constant independent from

Yt (since (A∗
t ,dM

∗
t ) ∈ AR × Dt). This observation, combined with the expression of ∇Mf and the

compactness of M, leads to the third claim.

APPENDIX D

COMPLEMENTARY SIMULATION RESULTS

The results reported in Table IX were obtained on an image sequence similar to Section IV corrupted

by a slightly colored noise generated as in [26]. The same parameters as those given in Table II have

been used. The proposed method outperforms the techniques it is compared to (in terms of estimation

accuracy and reconstruction error) whenever one endmember is scarcely present in one or several images

of the sequence, but well represented in at least one image. This simulation suggests the proposed method

is relatively robust to moderately colored Gaussian noise (i.e., with a diagonal covariance matrix).
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APPENDIX E

COMPLEMENTARY RESULTS ON THE REAL DATASET

The number of endmembers estimated by HySime [26] and the recent method developed in [27]

obtained on each image of the sequence have been added in Section V.A of the revision (Table VI),

and reproduced below in Table VI. Figs. 12 to 14 show the estimated abundance maps and endmembers

obtained by the different methods. Note that these results show that the signatures of the water, the soil

and the vegetation have been split into two or more components by the different algorithms when using

a number of endmembers R ≥ 4.

An example highlighting endmember splitting when the proposed method is run for R = 4 and 5

are shown below. The corresponding abundance maps are delineated in red in Figs. 12 and 13, and

the corresponding signatures are given in green in Figs. 14 and 15. Moreover, the correlation matrix

between the abundance maps associated with the time instants corresponding to endmember splitting is

displayed in Fig. 16. A positive correlation coefficient suggests that two signatures correspond to the

same endmember. Note that similar observations can be made with the other methods.

As a consequence, we can conclude that the unmixing results obtained with R = 3 are more relevant

for this dataset.
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Fig. 1. Reference endmembers (red lines) and the corresponding instances under spectral variability (blue dotted lines) involved

in the synthetic HS images.
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(a) (b)

(c) (d)

(e)

Fig. 2. Sensitivity analysis of the reconstruction error RE with respect to the tuning of the algorithm hyper-parameters. Given

the significant number of free parameters to be tuned, each parameter has been adjusted individually with the others set to

a priori reasonable values (i.e., (α, β, γ, σ2, κ2) = (10−2, 10−4, 10−4, σ̂2, 10−3), where σ̂2 = 0.0372 denotes the theoretical

average energy of the variability introduced in the dataset considered). Only the parameters β and γ may induce oscillations of

very small amplitude if not set appropriately. It is interesting to note that the interval [10−3, 10−2] can be chosen in practice

for both parameters to obtain reasonable reconstruction errors.
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1.00 / 36 0.97 / 12 0.91 / 0 0.83 / 0 0.72 / 0 0.61 / 0 0.51 / 0 0.42 / 0 0.36 / 0 0.33 / 0

Fig. 3. Abundance maps of the first endmember used in the synthetic mixtures (theoretical abundances on the first line,

VCA/FCLS on the second line, SISAL/FCLS on the third line, ℓ1/2 NMF on the fourth line, BCD/ADMM on the fifth line,

proposed method on the last line). The top line indicates the theoretical maximum abundance value and the true number of

pixels whose abundance is greater than 0.95 for each time instant.
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0.33 / 0 0.36 / 0 0.42 / 0 0.51 / 0 0.61 / 0 0.72 / 0 0.83 / 0 0.91 / 0 0.97 / 1718 1.00 / 1917

Fig. 4. Abundance maps of the second endmember used in the synthetic mixtures (theoretical abundances on the first line,

VCA/FCLS on the second line, SISAL/FCLS on the third line, ℓ1/2 NMF on the fourth line, BCD/ADMM on the fifth line,

proposed method on the last line). The top line indicates the theoretical maximum abundance value and the true number of

pixels whose abundance is greater than 0.95 for each time instant.



FIGURES 29

0.33 / 0 0.36 / 0 0.42 / 0 0.51 / 0 0.61 / 0 0.72 / 0 0.83 / 0 0.91 / 0 0.97 / 519 1.00 / 1465

Fig. 5. Abundance maps of the third endmember used in the synthetic mixtures (theoretical abundances on the first line,

VCA/FCLS on the second line, SISAL/FCLS on the third line, ℓ1/2 NMF on the fourth line, BCD/ADMM on the fifth line,

proposed method on the last line). The top line indicates the theoretical maximum abundance value and the true number of

pixels whose abundance is greater than 0.95 for each time instant.
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(a) (b) (c)

(d) (VCA) (e) (VCA) (f) (VCA)

(g) (SISAL) (h) (SISAL) (i) (SISAL)

(j) (ℓ1/2 NMF) (k) (ℓ1/2 NMF) (l) (ℓ1/2 NMF)

(m) (BCD/ADMM) (n) (BCD/ADMM) (o) (BCD/ADMM)

Fig. 6. Estimated endmembers on the synthetic hyperspectral time series for R = 3 (endmembers obtained by the proposed

method in red with variability in blue dotted lines on the first line, VCA-extracted endmembers on the second line, SISAL

endmembers on the third line, ℓ1/2 NMF on the fourth line, BCD/ADMM-extracted endmembers on the last line)).
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(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015

Fig. 7. Scenes used in the experiment, given with their respective acquisition date.



FIGURES 32

Fig. 8. Water abundance maps (proposed method on the first line, VCA/SUNSAL on the second, SISAL/SUNSAL on the third,

ℓ1/2 NMF on the fourth, BCD/ADMM on the last).



FIGURES 33

Fig. 9. Soil abundance maps (proposed method on the first line, VCA/SUNSAL on the second, SISAL/SUNSAL on the third,

ℓ1/2 NMF on the fourth, BCD/ADMM on the last).
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Fig. 10. Vegetation abundance maps (proposed method on the first line, VCA/SUNSAL on the second, SISAL/SUNSAL on the

third, ℓ1/2 NMF on the fourth, BCD/ADMM on the last). The region delineated in red, where almost no vegetation is supposed

to be present, reveals that the water endmember extracted by VCA has been split into two parts. This endmember identification

error has an influence on ℓ1/2 NMF and BCD/ADMM, but the error is relatively well corrected by the abundance sparsity

prior used in ℓ1/2 NMF, at the price of signficantly degraded endmember estimation (see Fig. 11l). This observation is further

confirmed in Figs. 11d and 11f. The results obtained by ℓ1/2 NMF and BCD/ADMM are similarly affected, since initialized

with VCA.
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(a) Water (b) Soil (c) Vegetation

(d) Water (VCA) (e) Soil (VCA) (f) Veg. (VCA)

(g) Water (SISAL) (h) Soil (SISAL) (i) Veg. (SISAL)

(j) Water (k) Soil (l) Vegetation

(m) Water (n) Soil (o) Vegetation

Fig. 11. Endmembers and variability (endmembers in red lines, variability in blue dashed lines) recovered by the proposed

method on the first line, VCA-extracted endmembers on the second line, SISAL-extracted endmembers on the third line, ℓ1/2
NMF on the fourth line, BCD/ADMM on the last line). The endmembers given in black on the second line correspond to the

endmembers identified by VCA on the image 7d, where the water endmember has been split into two parts (see Figs. 11d and

11f). Note that the estimation of the vegetation signature by ℓ1/2 NMF is particularly poor (signature of amplitude significantly

larger than 1) for the image 7d, as illustrated in Fig. 11l.
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(a) Water (b) Vegetation

(c) Soil 1 (d) Soil 2

Fig. 12. Abundance obtained for R = 4. Inconsistencies due to endmember splitting can be easily observed in the abundance

maps estimated by the different methods (for instance in the areas delineated in red, showing that some signatures associated

the abundance maps in Figs. 12c and 12d come from a single endmember).
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(a) Vegetation (b) Water 1 (c) Water 2

(d) Soil 1 (e) Soil 2

Fig. 13. Abundance maps obtained for R = 5. Inconsistencies due to endmember splitting can be easily observed in the

abundance maps estimated by the different methods (for instance in the areas delineated in red, showing that some signatures

associated to the abundance maps in Figs. 13b and 13c come from a single endmember).
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(a) Vegetation (b) Water 1 (c) Water 2 (d) Soil

(e) Vegetation (f) Water 1 (g) Water 2 (h) Soil

(i) Vegetation (j) Water 1 (k) Water 2 (l) Soil

(m) Vegetation (n) Water 1 (o) Water 2 (p) Soil

(q) Vegetation (r) Water 1 (s) Water 2 (t) Soil

Fig. 14. Endmembers and variability for R = 4 (endmembers in red lines, variability in blue dashed lines) recovered by

the proposed method (first row), VCA (second row), SISAL (third row), NMF (fourth row), BCD/ADMM (last row). Many

endmembers are split when analyzing the corresponding abundance maps in Fig. 13.
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(a) Vegetation (b) Water 1 (c) Water 2 (d) Soil (e) Soil 2

(f) Vegetation (g) Water 1 (h) Water 2 (i) Soil (j) Soil 2

(k) Vegetation (l) Water 1 (m) Water 2 (n) Soil (o) Soil 2

(p) Vegetation (q) Water 1 (r) Water 2 (s) Soil (t) Soil 2

(u) Vegetation (v) Water 1 (w) Water 2 (x) Soil (y) Soil 2

Fig. 15. Endmembers and variability for R = 5 (endmembers in red lines, variability in blue dashed lines) recovered by

the proposed method (first row), VCA (second row), SISAL (third row), NMF (fourth row), BCD/ADMM (last row). Many

endmembers are split when analyzing the corresponding abundance maps in Fig. 12.
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(a) (t = 1, R = 4) (b) (t = 1, R = 5)

Fig. 16. Correlation matrix of the abundance maps estimated by the proposed method, corresponding to the examples delineated

in red in Figs. 12 and 13. The diagonal entries of the matrices have been removed for visualization purpose. Fig. 16a confirms

that the abundance maps of endmember 3 and 4 are strongly correlated at time t = 1 for the experiment with R = 4, which

suggests that the corresponding endmember has been split into two components. Similarly, Fig. 16b confirms that the abundance

maps of endmember 2 and 3 are strongly correlated at time t = 1 for the experiment with R = 5.
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TABLE I

NOTATIONS.

N number of pixels

L number of spectral bands

R number of endmembers

T number of images

ynt ∈ R
L nth pixel of the tth image

Yt ∈ R
L×N lexicographically ordered pixels of the tth image

M ∈ R
L×R endmember matrix

dMt ∈ R
L×R tth variability matrix

At ∈ R
R×N tth abundance matrix

ant ∈ R
R nth column of the matrix At

� component-wise inequality

Y [0, 1]L×N

M [0, 1]L×R

SR unit simplex of RR

AR

{

A ∈ R
R×N

∣

∣an ∈ SR, ∀n ∈ J1, NK
}

BF(Z, κ)
{

X ∈ R
L×R

∣

∣‖X− Z‖
F
≤ κ

}

D BF(0, σ) ∩
{

dM
∣

∣

∥

∥Eω

[

dM(ω)
]
∥

∥

F
≤ κ

}

Dt BF(0, σ) ∩
{

dM
∣

∣

∥

∥

∑t−1
i=1 dMi + dM

∥

∥

F
≤ tκ

}

Zt AR ×Dt

Q(Yt,M) {(A,dM) ∈ Zt|∇(A,dM)f(Yt,M,A,dM) = 0}
PS projector on the set S
P+ projector on

{

X ∈ R
L×R

∣

∣X � 0L,R

}

〈X,Y〉 matrix inner product Tr(XTY)

ιS(x)

{

0 if x ∈ S
+∞ otherwise.
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TABLE II

PARAMETERS USED IN THE EXPERIMENTS.

Synthetic data Real data

σ2 1 1

κ2 0.1 0.01

α 10−4 0

β 10−3 10−4

γ 3× 10−5 0

ND
iter 50 50

NP
iter 50 50

Niter 50 50

Nepochs 10 10

ξ 0.98 0.98
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TABLE III

SIMULATION RESULTS ON SYNTHETIC DATA (GMSE(A)×10−3 , GMSE(dM)×10−4 , RE ×10−5).

t 1 2 3 4 5 6 7 8 9 10

aSAM(M) (°)

VCA/SUNSAL 19.94 19.13 18.24 17.78 17.24 16.94 15.90 14.03 10.16 8.21

SISAL/SUNSAL 17.61 17.07 17.11 17.53 17.46 17.10 16.20 13.57 9.70 15.50

Proposed – 2.9023 –

ℓ1/2 NMF 20.44 20.01 19.90 19.90 19.96 19.97 19.53 18.10 15.08 12.55

BCD/ADMM 19.97 19.46 18.35 17.98 17.62 17.33 16.51 14.94 11.24 7.92

GMSE(A)

VCA/SUNSAL 33.0 68.2 84.7 62.3 41.0 25.6 21.0 24.1 29.0 32.3

SISAL/SUNSAL 26.9 57.6 64.9 52.1 37.3 22.6 28.7 22.6 31.4 34.2

Proposed 0.50 1.26 2.39 3.82 4.56 4.60 3.46 1.45 0.36 0.08

ℓ1/2 NMF 40.1 130.8 109.8 89.0 73.4 66.6 67.7 74.5 81.9 85.9

BCD/ADMM 32.9 64.2 80.0 66.1 42.9 26.4 210 24.2 29.7 32.6

RE

VCA/SUNSAL 3.49 6.53 3.81 3.89 3.96 4.03 4.03 3.97 3.99 3.62

SISAL/SUNSAL 3.46 3.64 3.75 3.80 3.83 3.88 3.91 3.90 3.79 3.53

Proposed 3.46 3.64 3.75 3.80 3.86 3.98 3.97 3.98 3.81 3.54

ℓ1/2 NMF 4.20 4.04 4.27 5.20 7.67 11.76 16.61 21.13 24.27 24.27

BCD/ADMM 3.43 3.65 3.74 3.80 3.83 3.87 3.91 3.90 3.79 3.53

time (s)

VCA/SUNSAL 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

SISAL/SUNSAL 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.3

Proposed – 168 –

ℓ1/2 NMF 20 20 23 26 21 22 27 21 22 23

BCD/ADMM 53 179 139 140 84 85 85 84 84 84

GMSE(dM)
Proposed 3.03 1.00 0.39 0.34 0.42 0.51 0.77 0.62 0.73 2.20

BCD/ADMM 17.80 6.85 3.40 3.32 3.90 3.80 3.10 3.28 7.20 19.12
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TABLE IV

SIMULATION RESULTS ON SYNTHETIC DATA (R = 6, WHITE GAUSSIAN NOISE, GMSE(A)×10−3 , GMSE(dM)×10−4 , RE

×10−4).

VCA/FCLS SISAL/FCLS Proposed method ℓ1/2 NMF BCD/ADMM

aSAM(M) (°) 2.1449 1.6676 1.4885 3.4103 2.2700

GMSE(A) 1.4 8.3 1.7 4.5 2.85

GMSE(dM) / / 2.69 / 1.31

RE 1.48 1.20 1.22 1.53 1.20

time (s) 4 5 344 432 1066
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TABLE V

SIMULATION RESULTS ON SYNTHETIC DATA (R = 10, WHITE GAUSSIAN NOISE, GMSE(A)×10−2 , GMSE(dM)×10−4 ,

RE ×10−4).

VCA/FCLS SISAL/FCLS Proposed method ℓ1/2 NMF BCD/ADMM

aSAM(M) (°) 3.5200 9.5276 2.8256 5.5780 3.2728

GMSE(A) 7.24 3.32 0.428 7.03 6.45

GMSE(dM) / / 8.9 / 7.2

RE 4.63 1.67 1.99 3.90 1.70

time (s) 5 6 204 279 735



TABLES 46

TABLE VI

ENDMEMBER NUMBER R ESTIMATED ON EACH IMAGE OF THE REAL DATASET BY HYSIME [26] AND EGA [27].

HySime [26] EGA [27]

04/10/2014 16 3

06/02/2014 21 5

09/19/2014 19 4

11/17/2014 21 3

04/29/2015 22 3
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TABLE VII

SIMULATION RESULTS ON REAL DATA (RE ×10−4).

RE time (s)

R
=

3

VCA/FCLS 12.7 2

SISAL/FCLS 0.87 3

ℓ1/2 NMF 3.83 156

BCD/ADMM 0.37 2449

Proposed 1.04 134

R
=

4

VCA/FCLS 43.8 2

SISAL/FCLS 0.35 3

ℓ1/2 NMF 16.0 163

BCD/ADMM 0.27 4396

Proposed 0.76 126

R
=

5

VCA/FCLS 63.9 2

SISAL/FCLS 0.17 4

ℓ1/2 NMF 14.6 174

BCD/ADMM 0.098 12511

Proposed 0.17 128
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TABLE VIII

EXPERIMENT WITH REAL DATA: ENERGY OF THE VARIABILITY CAPTURED FOR EACH ENDMEMBER AT EACH TIME INSTANT

(‖dmkt‖
2
2/L× 10−5

FOR k = 1, . . . , R, t = 1, . . . , T ).

Water Vegetation Soil

04/10/2014 1.22 9.68 11.51

06/02/2014 1.44 11.85 38.37

09/19/2014 7.29 11.41 9.30

11/17/2014 2.77 21.73 16.55

04/29/2015 0.58 106.03 26.19
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TABLE IX

SIMULATIONS RESULTS ON SYNTHETIC DATA (R = 3, COLORED GAUSSIAN NOISE, GMSE(A)×10−2 , GMSE(dM)×10−4 ,

RE ×10−7).

VCA/FCLS SISAL/FCLS Proposed method ℓ1/2 NMF [16] BCD/ADMM [7]

aSAM(M) (°) 9.52 9.3036 2.1060 10.7188 9.3951

GMSE(A) 4.85 4.19 0.17 7.27 3.81

GMSE(dM) / / 4.80 / 1.86

RE 4.93 2.43 2.32 24.4 2.32

time (s) 2 4 369 43 798
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