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Abstract—Given a mixed hyperspectral data set, linear un-
mixing aims at estimating the reference spectral signatures
composing the data – referred to as endmembers – their abun-
dance fractions and their number. In practice, the identified
endmembers can vary spectrally within a given image and can
thus be construed as variable instances of reference endmem-
bers. Ignoring this variability induces estimation errors that
are propagated into the unmixing procedure. To address this
issue, endmember variability estimation consists of estimating
the reference spectral signatures from which the estimated
endmembers have been derived as well as their variability with
respect to these references. This paper introduces a new linear
mixing model that explicitly accounts for spatial and spectral
endmember variabilities. The parameters of this model can
be estimated using an optimization algorithm based on the
alternating direction method of multipliers. The performance of
the proposed unmixing method is evaluated on synthetic and real
data. A comparison with state-of-the-art algorithms designed to
model and estimate endmember variability allows the interest of
the proposed unmixing solution to be appreciated.

Index Terms—Hyperspectral imagery, linear unmixing, end-
member spatial and spectral variability, Alternating Direction
Method of Multipliers (ADMM).

I. INTRODUCTION

O
VER the past decades, hyperspectral imagery has been

receiving an increasing interest. Whereas traditional

red / green / blue or multispectral images are composed of

a limited number of spectral channels (from three to tens),

hyperspectral images are acquired in hundreds of contiguous

spectral bands facilitating the analysis of the elements in the

scene, e.g., determining their nature and relative proportions.

However, the high spectral resolution of these images is

mitigated by their lower spatial resolution, hence the need to

unmix the data. Spectral unmixing is aimed at estimating the

reference spectral signatures – referred to as endmembers –

their abundance fractions and their number from which the L-

multi-band observations are derived according to a predefined

mixing model. Assuming the absence of any microscopic

interaction between the materials of the imaged scene and a

negligible declivity, a linear mixing model (LMM) is clas-

sically used to describe the structure of the collected data

[1]. However, the spectral signatures contained in a reference
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image can vary spectrally, spatially or temporally from an

image to another due to varying acquisition conditions. This

can result in significant estimation errors being propagated

throughout the unmixing process. Various models either de-

rived from a statistical or a deterministic point of view have

been designed to address this issue [2]. More precisely, the

first class of methods assumes that the endmember spectra

can be considered as realizations of multivariate distributions.

The most popular models are the normal composition model

[3] and the beta compositional model [4]. The second class

of methods considers the endmember signatures as members

of spectral libraries associated with each material (bundles).

Two methods using spectral libraries have been especially

considered in the literature: the automated endmember bundles

(AEB) [5] and the Fisher discriminant null space (FDNS)

[6]. Whereas AEB enables the extraction of an endmember

library to account for spectral variabilities, the aim of FDNS

is to estimate a transformation projection matrix to project

the hyperspectral data into a space minimizing the variability

impact.

Since the identified endmembers can be considered as

variable instances of reference endmembers, we introduce an

extended version of the classical LMM to explicitly model

the spectral variability. In [7], the variability is assumed

to only result from scaling factors. Conversely, in this pa-

per, inspired by a model designed in [8], each endmember

is represented by a "pure" spectral signature corrupted by

an additive perturbation accounting for its variability. The

perturbation is allowed to vary from a pixel to another to

represent spatial-spectral variabilities. As a result, the proposed

perturbed LMM (PLMM) can capture endmember spatial and

spectral variability within a given image. To the best of our

knowledge, it is the first time endmember variability has been

explicitly modeled as an additive perturbation.

The promising results obtained with the alternating direction

method of multipliers (ADMM) in hyperspectral imagery [9]

and in image deblurring [10]–[14] serve as an incentive to

apply a similar framework to conduct PLMM-based unmixing.

A key property of the ADMM framework lies in the introduc-

tion of appropriate splitting variables. Indeed, the specified

constraints can be handled independently from the rest of the

problem and often lead to analytical solutions when solving the

resulting optimization problem. Using this fruitful principle,

an ADMM-based algorithm for linear unmixing using a group

lasso ℓ2,1-norm regularization was recently developed in [15],

[16]. Inspired by these examples, this paper proposes to

exploit the advantages of an ADMM-based resolution of the
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TABLE I
TABLE OF NOTATIONS.

N number of pixels
L number of spectral bands
K number of endmembers

Y ∈ R
L×N lexicographically ordered pixels

M ∈ R
L×K endmember matrix

dMn ∈ R
L×K nth variability matrix

A ∈ R
K×N abundance matrix

V ∈ R
(K−1)×L projector on the space spanned by the

K − 1 principal components of Y

U ∈ R
L×(K−1) inverse projector

T ∈ R
(K−1)×K projection of M on the PCA space

mn,k , m̃n,j column k, row j of the matrix Mn

[AB]k, {AB}j column k, row j of the matrix AB

� term-wise inequality

S+
n,p =

{
X ∈ R

n×p
∣∣X � 0n,p

}

1n = [1, 1, . . . , 1]T ∈ R
n

IA(x) =

{
0 ifx ∈ A
+∞ otherwise.

linear unmixing problem to account for spatial and spectral

endmember variabilities.

Throughout the article, the number of endmembers will be

assumed to be a priori known or estimated by any state-of-the-

art method (e.g., [17]) since estimating the required number

of endmembers to appropriately describe the data as well as

endmember variability is a challenging task. Indeed, the choice

of K drastically alters the representation of the imaged scene,

and is thus a crucial step to the endmember identification and

the subsequent abundance estimation [1], [17], [18].

The paper is organized as follows. The PLMM accounting

for spectral and spatial variabilities is introduced in Section II.

Section III describes an ADMM-based algorithm to solve the

resulting optimization problem. Experimental results obtained

on synthetic and real data are reported in Section IV and V

respectively. The results obtained with the proposed algorithm

are systematically compared to those of the vertex component

analysis / fully constrained least squares (VCA/FCLS), the

simplex identification via split augmented Lagrangian (SISAL)

[9] coupled with FCLS, AEB and FDNS. Section VI finally

concludes this work.

II. PROBLEM STATEMENT

A. Perturbed linear mixing model (PLMM)

In the absence of any specific prior knowledge on the

variability nature (i.e., errors affecting the endmembers), we

have chosen to explicitly represent the variability by a spa-

tially varying additive endmember perturbation. This choice,

inspired by a model designed in [8], appears to be simple

and flexible enough to account for the observed variability.

Assuming that the number of endmembers K is known, the

proposed PLMM differs from the classical LMM insofar as

each pixel yn is represented by a combination of the K
endmembers – denoted as mk – affected by a perturbation

vector dmn,k accounting for endmember variability. The

resulting PLMM can be written

yn =

K∑

k=1

akn

(
mk + dmn,k

)
+ bn for n = 1, . . . , N (1)

where yn denotes the nth image pixel, mk is the kth end-

member, akn is the proportion of the kth endmember in the

nth pixel, and dmn,k denotes the perturbation of the kth

endmember in the nth pixel. Finally, bn models a zero-mean

white Gaussian noise resulting from the data acquisition as

well as modeling errors. We can note that the proposed PLMM

reduces to the classical LMM in absence of variability. In

matrix form, the PLMM (1) can be written as follows

Y = MA+

[
dM1a1 . . . dMNaN

]

︸ ︷︷ ︸
∆

+B (2)

where Y = [y1, . . . ,yN ] is an L × N matrix containing

the image pixels, M is an L × K matrix containing the

endmembers, A is a K×N matrix composed of the abundance

vectors an, dMn is an L×K matrix whose columns are the

perturbation vectors associated with the nth pixel, and B is an

L×N matrix accounting for the noise. The non-negativity and

sum-to-one constraints usually considered to reflect physical

considerations are

A � 0K,N , AT1K = 1N

M � 0L,K , M+ dMn � 0L,K , ∀n = 1, . . . , N.
(3)

When compared to the underlying models proposed in the

literature to mitigate variability [2], model (1) presents the

advantage to explicitly address the variability phenomenon in

terms of an additive perturbation affecting each endmember.

This perturbation accounts for any deviation from the linear

mixing model (as will be illustrated in our experiments). The

main contribution of this paper is to propose an unsupervised

algorithm for estimating the endmembers contained in the

image and the abundances and endmember variability for each

pixel of this image.

B. Problem formulation

As mentioned in Section I, the PLMM (1) and constraints

(3) can be combined to formulate a constrained optimization

problem. An appropriate cost function is required to estimate

the parameters M,A,dM. Assuming the signal is corrupted

by a zero-mean white Gaussian noise, we define the data fitting

term as the Frobenius norm of the difference between the

acquisitions Y and the reconstructed data MA+∆. Since the

problem is ill-posed, additional penalization terms are needed.

In this paper, we propose to define penalization functions Φ,Ψ
and Υ to reflect the available a priori knowledge on M,A
and dM respectively. As a result, the optimization problem is

expressed as

(M∗,dM∗,A∗) ∈ arg min
M,dM,A

{
J (M,dM,A) s.t. (3)

}
(4)

with

J (M,dM,A) =
1

2
‖Y −MA−∆‖2F + αΦ(A)+

βΨ(M) + γΥ(dM)
(5)

where the penalization parameters α, β, γ control the trade-

off between the data fitting term 1
2 ‖Y −MA−∆‖2F and the
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penalties Φ(A), Ψ(M) and Υ(dM). In addition, we assume

that the penalization functions are separable, leading to

Φ(A) =
N∑

n=1

φ(an) (6)

Ψ(M) =
L∑

ℓ=1

ψ(m̃ℓ) (7)

Υ(dM) =

N∑

n=1

υ(dMn) (8)

where m̃ℓ denotes the ℓth row of M and φ, ψ and υ are

non-negative differentiable convex functions. This assumption

is used to decompose (4) into a collection of simpler sub-

problems described in Section III. All these penalizations are

described in the next paragraphs.

1) Abundance penalization: The abundance penalization Φ
has been chosen to promote spatially smooth abundances as

in [19]. More precisely, the abundance spatial smoothness

penalization is expressed in matrix form as

Φ(A) =
1

2
‖AH‖2F (9)

where H is a matrix computing the differences between

the abundances of a given pixel and those of its 4 nearest

neighbors [19]. The resulting expression of φ is detailed in

Appendix A.

2) Endmember penalization: As for Ψ, classical penaliza-

tions found in the literature consist of constraining the size

of the simplex whose vertices are the endmember signatures.

The volume criterion used in [20], [21] enables the volume

exactly occupied by the (K − 1)-simplex formed by the

endmembers to be penalized. The mutual distance between

the endmembers introduced in [22], [23] (which approximates

the volume) has a similar purpose. Finally, if the endmembers

are a priori close from available reference spectral signatures,

a penalization on the distance between the endmembers and

these signatures can be implemented. The expression of the

distance between the endmembers and some reference spectral

signatures, the mutual distance between the endmembers and

the volume penalization are recalled in the following lines. For

each penalization type, the corresponding expression of ψ is

given in Appendix A.

• The distance between the endmembers and some refer-

ence spectral signatures M0 is given by

Ψ(M) =
1

2
‖M−M0‖2F . (10)

• The mutual distance between the endmembers is ex-

pressed in matrix form as

Ψ(M) =
1

2

K∑

i=1

(
K∑

j=1

j 6=i

‖mi −mj‖22

)
.

(11)

• Under the pure pixel and linear mixture assumptions, the

data points are enclosed in a (K − 1)-simplex whose

vertices are the endmembers [21]. Let T be the projection

of M on the space spanned by the K − 1 principal

Algorithm 1: PLMM-unmixing: global algorithm.

Data: Y,A(0),M(0),dM(0)

Result: A,M,dM
begin

k ← 1;

while stopping criterion not satisfied do

a A(k) ← arg min
A

J
(
M(k−1),dM(k−1),A

)
;

b M(k) ← arg min
M

J
(
M,dM(k−1),A(k)

)
;

c dM(k) ← arg min
M

J
(
M(k),dM,A(k)

)
;

k ← k + 1;

A← A(k);

M←M(k);

dM← dM(k);

components of Y. The expression of the volume of this

subspace is

V(T) =
1

(K − 1)!

∣∣∣∣det
(

T

1T
K

)∣∣∣∣ .

To ensure the differentiability of the penalization with

respect to T, we propose to consider the following

penalty

Ψ(M) =
1

2
V2(T). (12)

3) Variability penalization: The variability penalizing func-

tion Υ has been designed to limit the norm of the spectral

variability. Indeed, it is legitimate to penalize the energy of

the perturbation matrices dMn in order to obtain a reasonable

endmember variability. In this paper, we propose to consider

the following penalty (having the advantage to be differen-

tiable with respect to dMn)

Υ(dM) =
1

2
‖dM‖2F =

1

2

N∑

n=1

‖dMn‖2F . (13)

To the best of our knowledge, no specific information re-

garding the spatial distribution of the variability is available

in the remote sensing literature so far. We have consequently

preferred not to include any additional regularization on dM.

However, any spatial penalization satisfying the assumptions

given in Paragraph II-B can be added when necessary (e.g.,

a group-Lasso ℓ2,1 penalization to promote spatial sparsity of

the variability term dM).

III. AN ADMM-BASED ALGORITHM

Since the problem (4) is not convex, a minimization strategy

similar to [12] has been adopted. Precisely, the cost function J
is successively minimized with respect to each variable A,M
and dM until a stopping criterion is satisfied. The assumptions

made on the penalization functions Φ,Ψ,Υ in Section II allow

the global optimization problem to be divided into a collection

of strictly convex sub-problems. These sub-problems have
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the nice property to involve differentiable functions simpli-

fying their resolution. Having introduced appropriate splitting

variables to account for the constraints, these sub-problems

are finally solved using ADMM steps admitting closed-form

expressions due to the separability assumption. The three

minimization steps considered in this algorithm present a

highly similar structure. The details are reported in Appendix

B to facilitate the reading of this paper.

A. ADMM: general principle

The ADMM is a technique combining the benefits of aug-

mented Lagrangian and dual decomposition methods to solve

constrained optimization problems [24]. More precisely, the

method consists of solving the original optimization problem

by successively minimizing the cost function of interest with

respect to each variable. The following elements (extracted

from [24]) recall a general formulation of the problem. Given

f : Rp → R
+, g ∈ R

m → R
+, A ∈ R

n×p and B ∈ R
n×m,

consider the general optimization problem

min
x,z

{
f(x) + g(z)

∣∣∣∣Ax+Bz = c

}
. (14)

The scaled augmented Lagrangian associated with this prob-

lem can be written

Lρ (x, z,u) = f(x) + g(z) +
ρ

2
‖Ax+Bz− c+ u‖22

where ρ > 0. Denote as x(k+1), z(k+1) and u(k+1) the primal

variables and the dual variable at iteration k + 1 of the

algorithm

x(k+1) ∈ arg min
x

Lρ

(
x, z(k),u(k)

)

z(k+1) ∈ arg min
z

Lρ

(
x(k+1), z,u(k)

)

u(k+1) = u(k) +Ax(k+1) +Bz(k+1) − c.

The ADMM consists in successively minimizing Lρ with

respect to x, z and u. A classical stopping criterion involves

the primal and dual residuals at iteration k + 1 (see [24, p.

19]): the procedure is iterated until

∥∥∥r(k)
∥∥∥
2
≤ εpri and

∥∥∥s(k)
∥∥∥
2
≤ εdual (15)

where the primal and dual residuals at iteration k + 1 are

respectively given by

r(k+1) = Ax(k+1) +Bz(k+1) − c (16)

s(k+1) = ρATB
(
z(k+1) − z(k)

)
(17)

and

εpri =
√
pεabs + εrel max

{∥∥∥Ax(k)
∥∥∥
2

2
,
∥∥∥Bz(k)

∥∥∥
2

2
, ‖c‖22

}

(18)

εdual =
√
nεabs + εrel

∥∥∥ATy(k)
∥∥∥
2

2
. (19)

Algorithm 2: ADMM optimization w.r.t. A (step (a)).

Data: Y,A(0),M(0), εpri, εdual, τ
incr, τ decr, µ

(A)(0)
n

Result: A

for n = 1 to N do

k ← 1;

λ
(A)(0)
n = 0;

w
(A)(0)
n = 0;

while stopping criterion not satisfied do

a
(k)
n ←

arg min
an

L
µ
(A)(k−1)
n

(
an,w

(A)(k−1)
n ,λ(A)(k−1)

n

)
;

w
(A)(k)
n ←

arg min
w

(A)
n

L
µ
(A)(k−1)
n

(
a
(k)
n ,w

(A)
n ,λ(A)(k−1)

n

)
;

λ
(A)(k)
n ← λ

(A)(k−1)
n +Qa(k)n +w

(A)(k)
n − s ;

µ
(A)(k)
n ← Update

(
µ
(A)(k−1)
n

)
using (20) ;

k ← k + 1 ;

an ← a
(k)
n ;

Finally, the parameter ρ can be adjusted using the rule de-

scribed in [24, p. 20]

ρ(k+1) =





τ incrρ(k) if
∥∥r(k)

∥∥
2
> µ

∥∥s(k)
∥∥
2

ρ(k)/τ decr if
∥∥s(k)

∥∥
2
> µ

∥∥r(k)
∥∥
2

ρ(k) otherwise.

(20)

Note that this parameter adjustment does not alter the ADMM

convergence as long as it is performed finitely many times.

B. Optimization with respect to A

With the assumptions made in paragraph II-B, optimizing

the cost function J with respect to A under the constraints

(3) is equivalent to solving the following problems

a∗n = arg min
an

{
1
2 ‖yn − (M+ dMn)an‖22 + αφ(an)

s.t. an � 0K , aTn1K = 1

}
.

(21)

After introducing the splitting variables w
(A)
n ∈ R

K for

n = 1, . . . , N such that
(
IK
1T
K

)

︸ ︷︷ ︸
Q

an +

(
−IK
0T
K

)

︸ ︷︷ ︸
R

wn =

(
0K

1

)

︸ ︷︷ ︸
s

(22)

the resulting scaled augmented Lagrangian is expressed as

L
µ
(A)
n

(
an,w

(A)
n ,λ(A)

n

)
=

1

2
‖yn − (M+ dMn)an‖22

+
µ
(A)
n

2

∥∥∥Qan +Rw(A)
n − s+ λ

(A)
n

∥∥∥
2

2

+ αφ(an) + IS+
K,1

(
w(A)

n

)
(23)

with µ
(A)
n > 0. The resulting algorithm (step a of Algo. 1) is

detailed in Algo. 2, and the solution to each sub-problem is

given in Appendix B.
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C. Optimization with respect to M

Similarly to Paragraph III-B, optimizing J with respect to

M under the constraint (3) is equivalent to solving

m̃∗ℓ = arg min
m̃ℓ





1
2

∥∥∥ỹℓ − m̃ℓA− δ̃ℓ

∥∥∥
2

2
+ βψ(m̃ℓ)

s.t. for n = 1, . . . , N

m̃ℓ � 0T
K , m̃ℓ + d̃mn,ℓ � 0T

K




(24)

where m̃ℓ denotes the ℓth row of M. Introducing the splitting

variables W
(M)
ℓ ∈ R

(N+1)×K for ℓ = 1, . . . , L such that

(
1
1N

)

︸ ︷︷ ︸
e

m̃ℓ −W
(M)
ℓ = −




0T
K


d̃m1,ℓ

...

d̃mN,ℓ







︸ ︷︷ ︸
Fℓ

(25)

the associated scaled augmented Lagrangian can be written

L
µ
(M)
ℓ

(
m̃ℓ,W

(M)
ℓ ,Λ

(M)
ℓ

)
=

1

2

∥∥∥ỹl − m̃ℓA− δ̃ℓ

∥∥∥
2

2

+
µ
(M)
ℓ

2

∥∥∥em̃ℓ −W
(M)
ℓ + Fℓ +Λ

(M)
ℓ

∥∥∥
2

F

+ βψ(m̃ℓ) + IS+
N+1,K

(
W

(M)
ℓ

)
(26)

with µ
(M)
ℓ > 0. The resulting algorithm (step b of Algo. 1) is

similar to Algo. 2. The solution to the optimization problems

depends on the selected endmember penalizing function Ψ
chosen in paragraph II-B2 (see Appendix B for more details).

D. Optimization with respect to dM

Finally, optimizing J with respect to dM under the con-

straint (3) is equivalent to solving the sub-problems

dM∗n = arg min
dMn





1
2 ‖yn − (M+ dMn)an‖22

+γυ(dMn)

s.t. M+ dMn � 0L,K




. (27)

Introducing the splitting variables W
(dM)
n = M + dMn for

n = 1, . . . , N , the resulting scaled augmented Lagrangian is

given by

L
µ
(dM)
n

(
dMn,W

(dM)
n ,Λ(dM)

n

)
=

1

2
‖yn − (M+ dMn)an‖22

+
µ
(dM)
n

2

∥∥∥dMn +M−W(dM)
n +Λ(dM)

n

∥∥∥
2

F

+ γυ(dMn) + IS+
L,K

(
W(dM)

n

)

(28)

with µ
(dM)
n > 0. The resulting algorithm (step c of Algo. 1)

is similar to Algo. 2. The solution to these problems is given

in Appendix B.

The optimization procedures detailed above are performed

sequentially until the stopping criterion is satisfied. The next

sections evaluate the performance of the resulting unmixing

strategy via several experiments conducted on synthetic and

real data.

E. Convergence and computational cost

The alternating scheme proposed in Alg. 1 is nothing but a

block coordinate descent descent (BCD) which is guaranteed

to converge to a stationary point of the objective function

J as long as each sub-problem is exactly minimized [25,

Proposition 2.7.1]. Besides, the sub-problems tackled in III-B,

III-C and III-D are strongly convex, hence the convergence

of the ADMM steps toward the unique minimum of each

independent sub-problem when the augmented Lagrangian

parameter has a constant value (see for instance [24]). The

same convergence result applies to the ADMM with the

parameter adjustment introduced in Paragraph III-A as long

as the parameter is updated finitely many times [24]. We

may however mention that the proximal alternating linearized

minimization (PALM) [26] could also be directly applied to the

considered problem with a rigorous convergence proof based

on the Kurdyka-Łojasiewicz property. This alternative work

has been presented in [27].

Considering the significant number of unknown parameters

and the simple expression of the ADMM updates detailed

in Appendix B, we can note that the computational cost is

dominated by matrix products, yielding an overall O(LK2N)
computational cost.

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers four images of size 128 × 64
acquired in 413 bands. Each image corresponds to a mixture

of K endmembers with K ∈ {3, 6} in presence or absence

of pure pixels (the absence of pure pixels is considered to

evaluate the algorithm performance in a very challenging

scenario). The synthetic linear mixtures have been corrupted

by additive white Gaussian noise to ensure the signal-to-noise

ratio is SNR = 30dB. Since no accepted variability model is

available in the literature, we propose the following generation

procedure to introduce controlled spectral variability. The cor-

rupted endmembers involved in the mixture (see Fig. 2) have

been generated using the product of reference endmembers

with randomly drawn piece-wise affine functions, providing

realistic perturbed endmembers as represented in Fig. 1. For

a given variability coefficient cvar > 0 fixed by the user, the

parameters ξi, i ∈ {1, 2, 3} and Lbreak ∈ {1, . . . , L} introduced

in Fig. 1 have been generated as follows

ξi ∼ U[1−cvar/2,1+cvar/2], i ∈ {1, 2, 3} (29)

Lbreak = ⌊L/2 + ⌊LU/3⌋⌋, U ∼ N (0, 1) (30)

where ⌊·⌋ denotes the floor operator. The synthetic data used

in the proposed experiments have been generated with a

value of cvar that is lower in the upper half of the image

(cvar = 0.1) than in the lower half (cvar = 0.25). Some

instances of the corresponding perturbed endmember spectra

are depicted in Fig. 2. Note that different affine functions have

been considered for different endmembers and different pixels.

A. State-of-the-art methods

The results of the proposed algorithm have been compared

to those obtained with two classical linear unmixing methods
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Fig. 1. Example of a randomly-generated affine function used to generate the
synthetically perturbed endmembers.

(VCA/FCLS, SISAL/FCLS) and two variability accounting

algorithms (AEB, FDNS). These methods are recalled below

with their most relevant implementation details.

1) Classical unmixing methods (no variability)

• VCA/FCLS: the endmembers are first extracted

using the vertex component analysis [28]. The abun-

dances are then estimated for each pixel using the

fully constrained least squares (FCLS) algorithm

[29]);

• SISAL/FCLS: the endmembers are first extracted

using the simplex identification via split augmented

Lagrangian [9]. The tolerance for the stopping rule

has been set to 10−2 and VCA has been used

as an initialization step. The abundances are then

estimated for each pixel using FCLS.

2) Variability accounting unmixing methods

• AEB [5], [30], [31]: the size of the bundles is equal

to 25% of the total pixel number. The endmembers

and abundance are estimated using VCA/FCLS;

• FDNS [6]: the endmembers and abundances are

estimated by VCA/FCLS ;

• Proposed method (BCD/ADMM): endmembers and

abundances have been initialized with VCA/FCLS

estimates. Note that VCA/FCLS is a method assum-

ing that there are pure pixels in the image, which

can be problematic in case the imaged scene does

not satisfy this assumption. The variability matrices

have been initialized with all their entries equal to

eps1. The algorithm is stopped when the relative

difference between two successive values of the

objective function is less than 10−3.

Different penalization combinations have been compared

for the proposed method. The abbreviations ss, mv and

vca are used for spatially smooth, minimum volume and

minimum distance to VCA in the following. The absence of

any additional abbreviation means that the method does not

include any abundance or endmember penalization term.

The performance of the algorithm has been assessed in

terms of endmember estimation using the average spectral

1MATLAB constant eps = 2.22× 10−16.

Fig. 2. Reference endmembers (red lines) and 20 corresponding instances
under spectral variability (blue dotted lines) involved in the synthetic data
experiments.

TABLE II
ADMM PARAMETERS.

Synthetic data Real data

τ incr 1.1 1.1

τ decr 1.1 1.1
µ 10 10

µ
(A)(0)
n 10−4 10−4

µ
(M)(0)
ℓ

10−8 10−8

µ
(dM)(0)
n 10−4 10−4

εabs 10−1 10−2

εrel 10−4 10−4

angle mapper (aSAM)

aSAM(M) =
1

K

K∑

k=1

arccos

( 〈mk|m̂k〉
‖mk‖2‖m̂k‖2

)

as well as in terms of abundance and perturbation estimation

by global mean square errors (GMSEs)

GMSE(A) =
1

KN
‖A− Â‖2F

GMSE(dM) =
1

NLK

N∑

n=1

‖dMn − d̂Mn‖2F.

As a measure of fit, the following reconstruction error (RE)
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Fig. 3. True abundances (fig. 3a to 3c) and the ssmvBCD/ADMM-estimations
(fig. 3d to 4c) – obtained with a synthetic dataset (no pure pixels, K = 3).
The spatial distribution of the variability with respect to each endmember is
presented in terms of energy ( 1√

L
‖dmn,k‖2 for the kth endmember in the

nth pixel) for visualization purpose in Figs. 3g to 3i.

has been also considered

RE =
1

LN

∥∥∥Y − Ŷ

∥∥∥
2

F

where Ŷ is the matrix formed of the pixels reconstructed using

the parameters estimated by the algorithm.

B. Results

The parameters used for the ADMM algorithms are detailed

in Table II, and the values chosen by cross-validation for α,

β and γ are reported in Table III and IV. The performance

measures returned by the unmixing methods are provided in

Table III for the datasets containing pure pixels, and in Table

IV for images without pure pixels, leading to the following

conclusions.

• The proposed method is robust to the absence of pure

pixels;

• The proposed method provides competitive results in

terms of aSAM while allowing endmember variability

to be estimated for each endmember in each pixel;

• For most simulation scenarios, the abundance MSEs and

the REs are lower than the MSEs and REs resulting from

state-of-the-art methods;

(a) Endmember 1 (b) Endmember 2

(c) Endmember 3

Fig. 4. Endmember estimations obtained on synthetic data in absence of pure
pixels (cf. Figs. 3 for the abundance estimations). The ssmvBCD/ADMM-
estimated endmembers (red lines) are given with typical examples of the
estimated variability (cyan dotted lines). The VCA endmembers are given
in blue dotted lines for comparison.

• The proposed method is computationally more expensive

than existing algorithms.

We can note that the smoothness penalization on the abun-

dances proves to be particularly appropriate in this experiment.

Moreover, an increasing number of endmembers implies a loss

of estimation performance. This result can be expected since

VCA/FCLS algorithm is used as an initialization step.

Finally, the variability captured by the proposed model

is presented in Figs. 3 and 4 for three endmembers: the

difference between the variability intensities detected in the

upper and the lower part of the scene is due to the different

variability coefficients applied to these areas, thus illustrating

the consistency of the proposed method.

V. EXPERIMENT WITH REAL DATA

A. Description of the datasets

The proposed algorithm has been applied to real hyper-

spectral datasets obtained by the Airborne Visible Infrared

Imaging Spectrometer (AVIRIS). The first scene was acquired

over Moffett Field, CA, in 1997. Water absorption bands were

removed from the 224 spectral bands, leaving 189 exploitable

spectral bands. The scene of interest (50 × 50) is partly

composed of a lake and a coastal area.

The second scene is a 190× 250 image extracted from the

well-known Cuprite dataset2. The number of spectral bands is

189 after removing the water-absorption and low SNR bands.

Many works previously conducted on this image provide

reference abundance estimation maps.

2The Moffett and Cuprite images are available at http://www.ehu.es/
ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes, and http://
aviris.jpl.nasa.gov/
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TABLE III
SIMULATION RESULTS FOR SYNTHETIC DATA IN PRESENCE OF PURE PIXELS (GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 , γ = 1).

K = 3, (α, β) = (1.4, 2.5× 10−5) K = 6, (α, β) = (0.37, 5.1× 10−4)

aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s) aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s)

VCA/FCLS 6.0038 3.80 / 7.56 1 6.3313 2.24 / 2.92 1

SISAL 5.2665 3.08 / 3.35 2 3.8365 3.05 / 2.25 3
FDNS 6.0038 3.79 / 7.56 4 6.3313 2.22 / 2.92 5
AEB 5.6971 2.07 / 3.50 52 5.7017 1.31 / 2.40 142
BCD/ADMM 5.9910 3.51 4.00 0.20 92 6.2965 1.59 2.93 0.05 230
ssBCD/ADMM 5.7765 3.15 4.25 0.23 422 6.0304 1.44 2.97 0.07 848
ssmvBCD/ADMM 5.4390 3.01 4.25 0.25 530 6.3397 1.42 2.97 0.07 603

TABLE IV
SIMULATION RESULTS FOR SYNTHETIC DATA IN ABSENCE OF PURE PIXELS (GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 , γ = 1).

K = 3, (α, β) = (24.5, 4.2× 10−9) K = 6, (α, β) = (0.71, 4.8× 10−4)

aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s) aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s)

VCA/FCLS 5.0639 2.07 / 2.66 1 6.5530 2.52 / 2.82 4

SISAL 4.4318 2.16 / 2.56 2 6.0431 1.63 / 2.02 5
FDNS 5.0639 2.06 / 2.66 3 6.5530 2.53 / 2.82 7
AEB 5.1104 2.11 / 2.66 33 6.0016 1.78 / 1.85 208
BCD/ADMM 5.2480 2.13 3.81 0.25 140 6.2785 2.14 3.33 0.30 3041
ssBCD/ADMM 4.1549 1.44 4.36 0.38 1263 6.2763 1.74 3.04 0.076 1527
ssmvBCD/ADMM 5.0584 1.94 4.59 0.47 1667 6.3207 1.67 3.05 0.08 795

The parameters used for the proposed approach are identical

to those used for the experiments with synthetic data (see Table

II). The only difference is that the algorithm has been stopped

when the relative difference between two successive values

of the objective function is less than 10−2. This value has

been chosen to obtain a compromise between the estimation

accuracy and the computational cost implied. The values

selected by cross-validation for α, β and γ are given in Table

V.

TABLE V
EXPERIMENT RESULTS CONDUCTED ON REAL DATA [SSBCD/ADMM FOR

MOFFETT WITH (α, β) = (0.05, 0), SSVCABCD/ADMM FOR CUPRITE

WITH (α, β) = (0.014, 404), RE ×10−4 ,γ = 1].

Moffett Cuprite

RE time (s) RE time (s)

VCA/FCLS 2.50 0.4 3.69 9.9

SISAL 1.12 30 2.16 15
FDNS 2.69 1 3.69 11
AEB 6.25 10 0.40 615
BCD/ADMM 0.18 144 0.23 1.9e4

B. Results

The unmixing performance are reported in Table V. For

the Moffett image, the variability detected by the proposed

algorithm is displayed in Figs. 5 and 6. The variability seems

to be more significant on the coastal area where the mixture

is not appropriately described by a linear model. The potential

non-linearities usually observed close to the coastal areas [32]–

[34] are interpreted as variability in the proposed method,

which tends to corroborate its consistency. Note that the

advantage of the proposed method is that it does not require

to consider a sophisticated non-linear model accounting for

interactions between the different endmembers as in [32], [34],

[35]. Conversely, all deviations from the LMM are contained

in the variability components dMn,k. We can also note that

the variability peaks observed in Fig. 6 are a clear indication

that several corrupted spectral bands have not been removed

prior to the unmixing process.

The results obtained for the Cuprite scene are reported in

Figs. 7, 8 and 9. Comparing our results with those of [28], we

visually found out that some similar endmembers that were

identified as different signatures by VCA for K = 14 [28]

are interpreted as multiple instances of single endmembers

in our setting (K = 10). The identification is given in

Figs. 7 and 9. Fig. 8 shows that the algorithm captured a

significant variability level in the pixels where many different

endmembers are detected, which reveals that the spectral

mixture may not be strictly linear in these pixels.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new linear mixing model accounting

for spatial and spectral endmember variabilities. The proposed

model extended the classical LMM by including an additive

spatially varying perturbation matrix that can capture endmem-

ber variabilities. The resulting unmixing problem was solved

by alternating marginal minimizations of an appropriately

regularized cost function, each minimization being performed

by an ADMM algorithm. Simulations conducted on synthetic

and real data enabled the interest of the proposed solution

to be appreciated. Indeed, the proposed method compared

favorably with state-of-the-art approaches while providing a

relevant variability estimation. The choice of the penalization
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parameters α, β and γ was performed by cross validation.

We think that it would be interesting to develop automatic

strategies for estimating these parameters. Finally, due to

the significant number of unknown parameters, the proposed

method is not intended to be applied to very large images. The

proposed approach can be applied as a complementary tool

when analyzing small hyperspectral images a priori believed

to be affected by a non-negligible variability level. Decreasing
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Fig. 5. ssmvBCD/ADMM abundance estimations (Moffett scene).
VCA/FCLS results are shown in Figs. 5a to 5c whereas Figs. 5d to 6c are for
the ssmvBCD/ADMM. The spatial distribution of the variability with respect
to each endmember is presented in terms of energy ( 1√

L
‖dmn,k‖2 for the

kth endmember in the nth pixel) for visualization purpose.

(a) Endmember 1 (b) Endmember 2

(c) Endmember 3

Fig. 6. ssmvBCD/ADMM endmembers (Moffett scene). The
ssmvBCD/ADMM-estimated endmembers (red lines) are plotted with
the VCA endmembers (blue lines) for comparison, and typical examples of
the estimated variability are given in cyan dotted lines.

the computational complexity of the algorithm introduced in

this work is clearly an interesting prospect.

APPENDIX A

CONSTRAINTS AND PENALIZATION TERMS

A. Abundance penalization: spatial smoothness

The abundance smoothness is expressed in matrix form as

Φ(A) =
1

2
‖AH‖2F (31)

where H denotes the matrix computing the differences be-

tween the abundances of a given pixel and the respective

abundances of its 4 neighbors

H =

[
H← H→ H↑ H↓

]
∈ R

N×4N .

For h = 1, . . . , H , we introduce

Hh =




0 −1 0 · · · 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 1 −1

0 . . . . . . 0 1



∈ R

W×W

H̃h =




1 0 · · · · · · 0

−1 1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . . 1 0

0 · · · 0 −1 0



∈ R

W×W .

Hence

H← = Diag(H1, . . . ,HH) and H→ = Diag(H̃1, . . . , H̃H).

In addition

H↑ =
[
0N,W ,H1

↑

]
and H↓ =

[
H1
↓,0N,W

]

with

H1
↑ =




W

xy

−1 0 . . . 0
. . .

. . .
...

1
. . . 0

N −W

xy

0
. . . −1

...
. . .

. . .

0 . . . 0 1




∈ R
N×(N−W )

H1
↓ = −H1

↑.

The only terms in 1
2 ‖AH‖2F related to an are

φ(an) =
1

2

( 3∑

k=0

h2n,n+kN

)

︸ ︷︷ ︸
cAn

‖an‖22

+

( N∑

i=1
i 6=n

3∑

k=0

hn,n+kNhi,n+kNaTi

)

︸ ︷︷ ︸
cT
n

an.
(32)



10

B. Endmember penalization

1) Distance between the endmembers and reference signa-

tures: The distance between the endmembers and the available

reference signatures is

Ψ(M) =
1

2
‖M−M0‖2F =

1

2

L∑

ℓ=1

‖m̃ℓ − m̃0,ℓ‖22 . (33)

As a consequence, the penalty for the ℓth band is

ψ(m̃ℓ) =
1

2
‖m̃ℓ − m̃0,ℓ‖22 . (34)

2) Mutual distance between the endmembers: The distance

between the different endmembers can be expressed as follows

Ψ(M) =
1

2

K∑

i=1

(
K∑

j=1

j 6=i

‖mi −mj‖22

)

=
1

2

K∑

k=1

‖MGk‖2F =
1

2
‖MG‖2F

(35)

with

G =

[
G1 · · · GK

]
∈ R

K×K2

and for k = 1, . . . ,K

Gk = −IK + ek1
T
K

where ek denotes the kth vector in the canonical basis of RK .

Hence

ψ(m̃ℓ) =
1

2

K∑

k=1

‖m̃ℓGk‖22 . (36)

3) Volume and endmember positivity constraint: The vol-

ume penalization is expressed using T, hence the need to find a

condition equivalent to the positivity of M (see [36]). We will

first analyze the general expression of the volume penalization

with respect to t̃k, and then give a condition on T ensuring

the positivity of M (respectively M+dMn when endmember

variability is considered).

a) Volume: The determinant of a matrix X ∈ R
K×K

can be developed along its ith row yielding

det(X) =
∑

j

(−1)i+jxij det(Xij) = x̃ifi

with

fi =
[
(−1)i+j det(Xij)

]K
j=1
∈ R

K .

Consequently, for k = 1, . . . ,K − 1

det

(
T

1T
K

)
= t̃kfk.

Using previous developments

ψ(t̃k) =
1

2(K − 1)!2
(t̃kfk)

2. (37)

b) Positivity constraint on M: Using the following nota-

tions

Y = UYproj. + Ȳ1, Ȳ1 = [ȳ| . . . |ȳ] ∈ R
L×N

M = UT+ Ȳ2, Ȳ2 = [ȳ| . . . |ȳ] ∈ R
L×K

one has

mℓr =
∑

j

uℓjtjr + ȳℓ =
∑

j 6=k

uℓjtjr + uℓktkr + ȳℓ.

The positivity constraint for mℓr can then be expressed as

tkr ≥ −
ȳℓ +

∑
j 6=k uℓjtjr

uℓk
.

Introducing the two sets of integers

U+
k = {ℓ|uℓk > 0}
U−k = {ℓ|uℓk < 0}

the previous equation implies that tkr ∈ [t−kr, t
+
kr], with

t−kr = max
ℓ∈U+

k

(
−
ȳℓ +

∑
j 6=k uℓjtjr

uℓk

)
(38)

t+kr = min
ℓ∈U−

k

(
−
ȳℓ +

∑
j 6=k uℓjtjr

uℓk

)
. (39)

4) Positivity constraint on M and dM: This case differs

from the previous one as the positivity constraint must be

verified simultaneously by M and Mn = M + dMn. We

will consequently derive a condition similar to (38). Let Tn

be the projection of Mn in the PCA subspace

Mn = UTn + Ȳ2.

Since

Tn = V
(
Mn − Ȳ2

)
= (T+ dTn) +VȲ2︸ ︷︷ ︸

Z

with {
T = V

(
M− Ȳ2

)

dTn = V
(
dMn − Ȳ2

)

the positivity constraint can be written

mn
ℓr ≥ 0 ⇔ tnkr ≥ −

ȳℓ +
∑

j 6=k uℓjt
n
jr

uℓk
⇔ tnkr ∈

[
tn−kr , t

n+
kr

]

with

tnkr = tkr + dtnkr + zkr (40)

tn−kr = max
ℓ∈U+

k

(
−
ȳℓ +

∑
j 6=k uℓjt

n
jr

uℓk

)
(41)

tn+kr = min
ℓ∈U−

k

(
−
ȳℓ +

∑
j 6=k uℓjt

n
jr

uℓk

)
. (42)
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We introduce the functions gk defined by

gk : R
1×K → R

2(N+1)×K

x̃ 7→




x̃− t̃−k

−x̃+ t̃+k

1N (x̃+ z̃k) +




d̃t1,k − t̃−1,k
...

d̃tN,k − t̃−N,k




−1N (x̃+ z̃k) +




t̃+1,k − d̃t1,k
...

t̃+N,k − d̃tN,k







,

(43)

where

t̃+k = [t+k1, · · · , t+kK ]

t̃−k = [t−k1, · · · , t−kK ].

Finally the positivity constraint on the sum of the endmembers

and their variability can be written

m̃ℓ + d̃m
n

ℓ � 0T
K ∀ℓ, ∀n (44)

⇔ gk(t̃k) � 02(N+1),K ∀k = 1, . . . ,K − 1. (45)

C. Variability penalization

The variability energy penalty is

Υ(dM) =
1

2
‖dM‖2F ⇒ υ (dMn) =

1

2
‖dMn‖2F . (46)

APPENDIX B

SOLUTIONS TO THE OPTIMIZATION SUB-PROBLEMS

A. Resolution with respect to A

Using (32), the scaled augmented Lagrangian (23) becomes

L
µ
(A)
n

(
an,w

(A)
n ,λ(A)

n

)
=

1

2
‖yn − (M+ dMn)an‖22

+
α

2

(
cAn ‖an‖22 + 2cTnan

)
+ IS+

K

(
w(A)

n

)

+
µ
(A)
n

2

∥∥∥Qan +Rw(A)
n − s+ λ

(A)
n

∥∥∥
2

2
.

Thus, for n = 1, . . . , N

a∗n =
[
(M+ dMn)

T (M+ dMn) + µ(A)
n QTQ+ αcAnIK

]−1
[
(M+ dMn)

Tyn − αcn + µ(A)
n QT

(
s−Rw(A)

n − λ
(A)
n

)]

(47)

and

w(A)
n

∗
= max

(
an + λ

(A)
n,1:K ,0K

)
(48)

where λ
(A)
n,1:K is the vector composed of the K first elements of

λ
(A)
n and the max must be understood as a term-wise operator.

In the absence of any penalization, the solution is obtained by

making α = 0 in the previous equations.

B. Resolution with respect to M

1) Distance between the endmembers and reference spec-

tral signatures: Using (34), the scaled augmented Lagrangian

(26) is

L
µ
(M)
ℓ

(
m̃ℓ,W

(M)
ℓ ,Λ

(M)
ℓ

)
=

1

2

∥∥∥ỹℓ − m̃ℓA− δ̃ℓ

∥∥∥
2

2

+
µ
(M)
ℓ

2

∥∥∥em̃ℓ −W
(M)
ℓ + Fℓ +Λ

(M)
ℓ

∥∥∥
2

F

+
β

2
‖m̃ℓ − m̃ℓ,0‖22 + IS+

(
W

(M)
ℓ

)
.

Thus

m̃∗ℓ =

[(
ỹℓ − δ̃ℓ

)
AT + βm̃ℓ,0+

µ
(M)
ℓ eT

(
W

(M)
ℓ − Fℓ −Λ

(M)
ℓ

)]

[
AAT + µ

(M)
ℓ

(
eT e+ β

)
IK

]−1
(49)

and for k = 1, . . . ,K

w
(M)∗
ℓ,k = max

(
[em̃ℓ + Fℓ +Λ

(M)
ℓ ]k,0N+1

)
. (50)

In the absence of any endmember penalization, the solution is

obtained by making β = 0 in the previous equation.

2) Mutual distance between the endmembers: Using (36),

the scaled augmented Lagrangian (26) is

L
µ
(M)
ℓ

(
m̃ℓ,W

(M)
ℓ ,Λ

(M)
ℓ

)
=

1

2

∥∥∥ỹℓ − m̃ℓA− δ̃ℓ

∥∥∥
2

2

+
µ
(M)
ℓ

2

∥∥∥em̃ℓ −W
(M)
ℓ + Fℓ +Λ

(M)
ℓ

∥∥∥
2

F

+
β

2

K∑

k=1

‖m̃ℓGk‖22 + IS+

(
W

(M)
ℓ

)
.

Thus

m̃∗ℓ =

[(
ỹℓ − δ̃ℓ

)
AT + µ

(M)
ℓ eT

(
W

(M)
ℓ − Fℓ −Λ

(M)
ℓ

)]

[
AAT + β

K∑

k=1

GkG
T
k + µ

(M)
ℓ

(
eT e

)
IK

]−1

(51)

with W
(M)
ℓ given by (50).

3) Volume penalization: Since the penalty is expressed

with respect to the variable T, the optimization sub-problems

related to the endmembers have to be re-written accordingly.

Using the notations

∆T =
[
dT1a1 . . . dTNaN

]
(52)

Ȳ1 = [ȳ| · · · |ȳ] ∈ R
L×N (53)

Ȳ2 = [ȳ| · · · |ȳ] ∈ R
L×K (54)

we obtain

‖Y −MA−∆‖2F =
∥∥U (Yproj. −TA−∆T ) + Ȳ1 − 2Ȳ2A

∥∥2
F

= ‖U (Yproj. −TA−∆T )‖2F
+ 2

〈
U (Yproj. −TA−∆T )

∣∣∣∣Ȳ1 − 2Ȳ2A

〉

+
∥∥Ȳ1 − 2Ȳ2A

∥∥2
F
.
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The only terms depending on T are

‖Yproj. −TA‖2
F
+ 2

〈
∆T −UT (Ȳ1 − 2Ȳ2A)︸ ︷︷ ︸

S

∣∣∣∣TA
〉

with

〈S|TA〉 = Tr
(
STTA

)
=

N∑

n=1

(K−1∑

j=1

sjnt̃jan

)
.

For k = 1, . . . ,K − 1, the resulting sub-problems are

t̃∗k = arg min
t̃k





1
2

∥∥∥ỹproj.

k − t̃kA

∥∥∥
2

2
+
∑N

n=1(sknt̃kan)

+ β
2(K−1)!2 (t̃kfk)

2

s.t. gk(t̃k) � 02(N+1),K




.

Introduce the splitting variables W
(T)
k such that

gk(t̃k) = W
(T)
k ∀k = 1, . . . ,K − 1. (55)

According to (37), the scaled augmented Lagrangian is

L
µ
(T)
k

(t̃k,W
(T)
k ,Λ

(T)
k ) =

1

2

∥∥∥ỹproj.

k − t̃kA

∥∥∥
2

2
+

N∑

n=1

(
snk t̃kan

)

+
β

2(K − 1)!2

(
t̃kfk

)2
+ IS+

(
W

(T)
k

)

+
µ
(T)
k

2

∥∥∥gk(t̃k)−W
(T)
k +Λ

(T)
k

∥∥∥
2

F
.

(56)

Finally,

t̃∗k =

[(
ỹ

proj.

k − s̃k

)
AT − 2µ

(T)
k

(
N z̃k +

N∑

n=1

d̃tn,k

)

+µ
(T)
k

(
t̃−k + t̃+k +

N∑

n=1

(t̃−n,k + t̃+n,k)

)

+µ
(T)
k

[
1 −1 1T

N −1T
N

] (
W

(T)
k −Λ

(T)
k

)]

[
AAT +

β

(K − 1)!2
fkf

T
k + 2(N + 1)µ

(T)
k IK

]−1

(57)

where Z = VȲ2 and for p = 1, . . . ,K

w
(T)∗
k,p = max

([
gk(t̃k) +Λ

(T)
k

]
p
,02(N+1)

)
. (58)

C. Resolution with respect to dM

Using (46), the scaled augmented Lagrangian (28) is

L
µ
(dM)
n

(
dMn,W

(dM)
n ,ΛdMn

)
=

1

2
‖yn − (M+ dMn)an‖22

+
µ
(dM)
n

2

∥∥∥dMn +M−W(dM)
n +Λ(dM)

n

∥∥∥
2

F

+
γ

2
‖dMn‖2F + IS+

(
W(dM)

n

)
.

Hence

dM∗n =

[
(yn −Man)a

T
n + µ(dM)

n

(
W(dM)

n −M−Λ(dM)
n

)]

[
ana

T
n + (µ(dM)

n + γ)IK

]−1

(59)

and for p = 1, . . . ,K

w(dM)∗
n,p = max

(
[dMn +M+Λ(dM)

n ]p,0K

)
.
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Fig. 7. ssvcaBCD/ADMM abundance results (Cuprite scene). The given
identification is based on a visual comparison with the results obtained in
[28].
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presenting the most significant level of variability. The variability is presented
in terms of energy ( 1√
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‖dmn,k‖2 for the kth endmember in the nth pixel)

for visualization purpose.
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