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Abstract—Given a mixed hyperspectral data set, linear un-
mixing aims at estimating the reference spectral signatures
composing the data — referred to as endmembers — their abun-
dance fractions and their number. In practice, the identified
endmembers can vary spectrally within a given image and can
thus be construed as variable instances of reference endmem-
bers. Ignoring this variability induces estimation errors that
are propagated into the unmixing procedure. To address this
issue, endmember variability estimation consists of estimating
the reference spectral signatures from which the estimated
endmembers have been derived as well as their variability with
respect to these references. This paper introduces a new linear
mixing model that explicitly accounts for spatial and spectral
endmember variabilities. The parameters of this model can
be estimated using an optimization algorithm based on the
alternating direction method of multipliers. The performance of
the proposed unmixing method is evaluated on synthetic and real
data. A comparison with state-of-the-art algorithms designed to
model and estimate endmember variability allows the interest of
the proposed unmixing solution to be appreciated.

Index Terms—Hyperspectral imagery, linear unmixing, end-
member spatial and spectral variability, Alternating Direction
Method of Multipliers (ADMM).

I. INTRODUCTION

VER the past decades, hyperspectral imagery has been

receiving an increasing interest. Whereas traditional
red / green / blue or multispectral images are composed of
a limited number of spectral channels (from three to tens),
hyperspectral images are acquired in hundreds of contiguous
spectral bands facilitating the analysis of the elements in the
scene, e.g., determining their nature and relative proportions.
However, the high spectral resolution of these images is
mitigated by their lower spatial resolution, hence the need to
unmix the data. Spectral unmixing is aimed at estimating the
reference spectral signatures — referred to as endmembers —
their abundance fractions and their number from which the L-
multi-band observations are derived according to a predefined
mixing model. Assuming the absence of any microscopic
interaction between the materials of the imaged scene and a
negligible declivity, a linear mixing model (LMM) is clas-
sically used to describe the structure of the collected data
[1]. However, the spectral signatures contained in a reference
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image can vary spectrally, spatially or temporally from an
image to another due to varying acquisition conditions. This
can result in significant estimation errors being propagated
throughout the unmixing process. Various models either de-
rived from a statistical or a deterministic point of view have
been designed to address this issue [2]. More precisely, the
first class of methods assumes that the endmember spectra
can be considered as realizations of multivariate distributions.
The most popular models are the normal composition model
[3] and the beta compositional model [4]. The second class
of methods considers the endmember signatures as members
of spectral libraries associated with each material (bundles).
Two methods using spectral libraries have been especially
considered in the literature: the automated endmember bundles
(AEB) [5] and the Fisher discriminant null space (FDNS)
[6]. Whereas AEB enables the extraction of an endmember
library to account for spectral variabilities, the aim of FDNS
is to estimate a transformation projection matrix to project
the hyperspectral data into a space minimizing the variability
impact.

Since the identified endmembers can be considered as
variable instances of reference endmembers, we introduce an
extended version of the classical LMM to explicitly model
the spectral variability. In [7], the variability is assumed
to only result from scaling factors. Conversely, in this pa-
per, inspired by a model designed in [8], each endmember
is represented by a "pure" spectral signature corrupted by
an additive perturbation accounting for its variability. The
perturbation is allowed to vary from a pixel to another to
represent spatial-spectral variabilities. As a result, the proposed
perturbed LMM (PLMM) can capture endmember spatial and
spectral variability within a given image. To the best of our
knowledge, it is the first time endmember variability has been
explicitly modeled as an additive perturbation.

The promising results obtained with the alternating direction
method of multipliers (ADMM) in hyperspectral imagery [9]
and in image deblurring [10]-[14] serve as an incentive to
apply a similar framework to conduct PLMM-based unmixing.
A key property of the ADMM framework lies in the introduc-
tion of appropriate splitting variables. Indeed, the specified
constraints can be handled independently from the rest of the
problem and often lead to analytical solutions when solving the
resulting optimization problem. Using this fruitful principle,
an ADMM-based algorithm for linear unmixing using a group
lasso £ 1-norm regularization was recently developed in [15],
[16]. Inspired by these examples, this paper proposes to
exploit the advantages of an ADMM-based resolution of the



TABLE I
TABLE OF NOTATIONS.
N number of pixels
L number of spectral bands
K number of endmembers
Y € REXN lexicographically ordered pixels

M € RLXK endmember matrix
dM,, € RLXK nth variability matrix
A € REXN abundance matrix

V e RIK-1xL projector on the space spanned by the
K — 1 principal components of Y
inverse projector

projection of M on the PCA space

column k, row j of the matrix M,,

Uc RLX(K—1)
T € R(K-1)XK
my k» my, j

Vi
[AB];, {AB}; column k, row j of the matrix AB
bt term-wise inequality
Sitp ={Xe¢ R"XF;JX = On,p}
1, =[1,1,...,1)] eR"
~_fo ifre A
Ta(@) - { 400 otherwise.

linear unmixing problem to account for spatial and spectral
endmember variabilities.

Throughout the article, the number of endmembers will be
assumed to be a priori known or estimated by any state-of-the-
art method (e.g., [17]) since estimating the required number
of endmembers to appropriately describe the data as well as
endmember variability is a challenging task. Indeed, the choice
of K drastically alters the representation of the imaged scene,
and is thus a crucial step to the endmember identification and
the subsequent abundance estimation [1], [17], [18].

The paper is organized as follows. The PLMM accounting
for spectral and spatial variabilities is introduced in Section II.
Section IIT describes an ADMM-based algorithm to solve the
resulting optimization problem. Experimental results obtained
on synthetic and real data are reported in Section IV and V
respectively. The results obtained with the proposed algorithm
are systematically compared to those of the vertex component
analysis / fully constrained least squares (VCA/FCLS), the
simplex identification via split augmented Lagrangian (SISAL)
[9] coupled with FCLS, AEB and FDNS. Section VI finally
concludes this work.

II. PROBLEM STATEMENT
A. Perturbed linear mixing model (PLMM)

In the absence of any specific prior knowledge on the
variability nature (i.e., errors affecting the endmembers), we
have chosen to explicitly represent the variability by a spa-
tially varying additive endmember perturbation. This choice,
inspired by a model designed in [8], appears to be simple
and flexible enough to account for the observed variability.
Assuming that the number of endmembers K is known, the
proposed PLMM differs from the classical LMM insofar as
each pixel y, is represented by a combination of the K
endmembers — denoted as mj — affected by a perturbation
vector dm,, ;; accounting for endmember variability. The
resulting PLMM can be written

K
Yn = Zakn<mk —|—dmn7k) +b, forn=1,...,N (1)
k=1

where y,, denotes the nth image pixel, my is the kth end-
member, ag, is the proportion of the kth endmember in the
nth pixel, and dm,, ; denotes the perturbation of the kth
endmember in the nth pixel. Finally, b,, models a zero-mean
white Gaussian noise resulting from the data acquisition as
well as modeling errors. We can note that the proposed PLMM
reduces to the classical LMM in absence of variability. In
matrix form, the PLMM (1) can be written as follows

Y = MA +

dM;a; ‘ ‘ dMyay | +B 2)

A

where Y = [y1,...,yn] is an L x N matrix containing
the image pixels, M is an L x K matrix containing the
endmembers, A is a K x [N matrix composed of the abundance
vectors a,,, dM,, is an L x K matrix whose columns are the
perturbation vectors associated with the nth pixel, and B is an
L x N matrix accounting for the noise. The non-negativity and
sum-to-one constraints usually considered to reflect physical
considerations are

A = OK,Nv
M = OL,Ka

ATl =1y

3
M+dMnEOL7K,\V/n=1,...7N. ()

When compared to the underlying models proposed in the
literature to mitigate variability [2], model (1) presents the
advantage to explicitly address the variability phenomenon in
terms of an additive perturbation affecting each endmember.
This perturbation accounts for any deviation from the linear
mixing model (as will be illustrated in our experiments). The
main contribution of this paper is to propose an unsupervised
algorithm for estimating the endmembers contained in the
image and the abundances and endmember variability for each
pixel of this image.

B. Problem formulation

As mentioned in Section I, the PLMM (1) and constraints
(3) can be combined to formulate a constrained optimization
problem. An appropriate cost function is required to estimate
the parameters M, A, dM. Assuming the signal is corrupted
by a zero-mean white Gaussian noise, we define the data fitting
term as the Frobenius norm of the difference between the
acquisitions Y and the reconstructed data ML A + A. Since the
problem is ill-posed, additional penalization terms are needed.
In this paper, we propose to define penalization functions &, ¥
and T to reflect the available a priori knowledge on M, A
and dM respectively. As a result, the optimization problem is
expressed as

(M*,dM*, A*) € arg min {j(M,dM,A) s.t. (3)} @)
M.,dM,A

with
J(M,dM, A) :% Y —MA — A2 + a®(A)+
BE(M) + 7Y (dM)

(&)

where the penalization parameters «, 3,~ control the trade-
off between the data fitting term 3 [|[Y — MA — A||}2: and the



penalties ®(A), ¥(M) and T(dM). In addition, we assume
that the penalization functions are separable, leading to

N

B(A) =) dlan) (6)
L
W(M) =) (my) (7)
Z;l
T(dM) = > v(dM,,) ®)

where m, denotes the ¢th row of M and ¢, ¢ and v are
non-negative differentiable convex functions. This assumption
is used to decompose (4) into a collection of simpler sub-
problems described in Section III. All these penalizations are
described in the next paragraphs.

1) Abundance penalization: The abundance penalization ¢
has been chosen to promote spatially smooth abundances as
in [19]. More precisely, the abundance spatial smoothness
penalization is expressed in matrix form as

1
O(A) = 7 [|AH]; ©)

where H is a matrix computing the differences between
the abundances of a given pixel and those of its 4 nearest
neighbors [19]. The resulting expression of ¢ is detailed in
Appendix A.

2) Endmember penalization: As for ¥, classical penaliza-
tions found in the literature consist of constraining the size
of the simplex whose vertices are the endmember signatures.
The volume criterion used in [20], [21] enables the volume
exactly occupied by the (K — 1)-simplex formed by the
endmembers to be penalized. The mutual distance between
the endmembers introduced in [22], [23] (which approximates
the volume) has a similar purpose. Finally, if the endmembers
are a priori close from available reference spectral signatures,
a penalization on the distance between the endmembers and
these signatures can be implemented. The expression of the
distance between the endmembers and some reference spectral
signatures, the mutual distance between the endmembers and
the volume penalization are recalled in the following lines. For
each penalization type, the corresponding expression of 1 is
given in Appendix A.

o The distance between the endmembers and some refer-
ence spectral signatures My is given by

1
T(M) = 5 [M - Mo (10)

e The mutual distance between the endmembers is ex-
pressed in matrix form as

LS
‘I'(M):a E (E |mi_mj||§>- (11)

i=1 \j=1

i

o Under the pure pixel and linear mixture assumptions, the
data points are enclosed in a (K — 1)-simplex whose
vertices are the endmembers [21]. Let T be the projection
of M on the space spanned by the K — 1 principal

Algorithm 1: PLMM-unmixing: global algorithm.

Data: Y,A©® M© am©

Result: A, M,dM

begin

k<« 1;

while stopping criterion not satisfied do

a A®  arg min j(M<k—1>, dM(k’l),A) :
A

b M®) « arg min j(M,dM(kfl), A(k)) ;
M

c aM® < arg min j(M<k>,dM, A<k>) :
M

B k+ k+1;
A+ Ak
M «— M®*),

| dM + dM™);

components of Y. The expression of the volume of this
1

subspace is
T
—— |det :
K- (132)‘

To ensure the differentiability of the penalization with
respect to T, we propose to consider the following
penalty

V(T) =

U (M) = %V2(T). (12)

3) Variability penalization: The variability penalizing func-
tion T has been designed to limit the norm of the spectral
variability. Indeed, it is legitimate to penalize the energy of
the perturbation matrices dM,, in order to obtain a reasonable
endmember variability. In this paper, we propose to consider
the following penalty (having the advantage to be differen-
tiable with respect to dM,,)

N
1 1
T(AM) = [dM]p =5 > [dMy[l. (3)
n=1

To the best of our knowledge, no specific information re-
garding the spatial distribution of the variability is available
in the remote sensing literature so far. We have consequently
preferred not to include any additional regularization on dM.
However, any spatial penalization satisfying the assumptions
given in Paragraph II-B can be added when necessary (e.g.,
a group-Lasso {5 ; penalization to promote spatial sparsity of
the variability term dM).

III. AN ADMM-BASED ALGORITHM

Since the problem (4) is not convex, a minimization strategy
similar to [12] has been adopted. Precisely, the cost function 7
is successively minimized with respect to each variable A, M
and dM until a stopping criterion is satisfied. The assumptions
made on the penalization functions @, ¥, T in Section II allow
the global optimization problem to be divided into a collection
of strictly convex sub-problems. These sub-problems have



the nice property to involve differentiable functions simpli-
fying their resolution. Having introduced appropriate splitting
variables to account for the constraints, these sub-problems
are finally solved using ADMM steps admitting closed-form
expressions due to the separability assumption. The three
minimization steps considered in this algorithm present a
highly similar structure. The details are reported in Appendix
B to facilitate the reading of this paper.

A. ADMM: general principle

The ADMM is a technique combining the benefits of aug-
mented Lagrangian and dual decomposition methods to solve
constrained optimization problems [24]. More precisely, the
method consists of solving the original optimization problem
by successively minimizing the cost function of interest with
respect to each variable. The following elements (extracted
from [24]) recall a general formulation of the problem. Given
f:RP 5 RT, g e R™ - Rt, A € R"™P and B € R"*™,
consider the general optimization problem

wind 70+ o(2) 14

Ax+Bz:c}.

The scaled augmented Lagrangian associated with this prob-
lem can be written

£, (x,2,u) = f(x) + g(z) + £ [ Ax + Bz — ¢ + u;

where p > 0. Denote as x(*+1) z(+1) and u(**+1) the primal
variables and the dual variable at iteration £ + 1 of the
algorithm

xFHD e arg min £, (x,z(k)7 u(k))
zZ*D ¢ arg min £, (x(’”l), z, u(k))
alk+D) a® ¢ AxHD Bkt ¢

The ADMM consists in successively minimizing £, with

respect to x,z and u. A classical stopping criterion involves

the primal and dual residuals at iteration k + 1 (see [24, p.

19]): the procedure is iterated until
R

2 2
where the primal and dual residuals at iteration k& + 1 are
respectively given by

P — Ay (kD) L By(k+D) _ ¢ (16)
g(k+1) _ pATB (Z(k+1) B Z(k)) (17)
and
i b 1 k) ||? K)||? 2

e = /pe™ + €™ maX{HAX( )H2 , HBZ( )’ ) ||c||2}
(18)
gdual _ \/ﬁgabs 4 gl ATy(k)HQ, (19)

2

Algorithm 2: ADMM optimization w.r.t. A (step (a)).

Data: Y, A(O), 1\/‘[(0)7 Epri» Eduals 7_incr7 7_decr7 M%A)(O)
Result: A

forn=1to N do

k<« 1;

)‘SlA)(O) -0

W;A)(O) -0

while stopping criterion not satisfied do

al)

arg min Eﬂ%A)(k—l) (an,w%A)(kfl), /\SlA)(kfl));

W)

arg min £ a1 (agbk%WSLA), )\(A)(’“l));

n
w®)

)\glATS(k) CABED | Qalh) 4 WD) g

,u%A)(k) + Update (uslA)(k_l)) using (20) ;
B k+—k+1;
| a, +al;

Finally, the parameter p can be adjusted using the rule de-

scribed in [24, p. 20]
7_incrp(k:) if Hr(k)H2 > 1 HS(IC)H2

P et [|s@], > e @],

(k)

p(k+1) _ (20)

otherwise.

Note that this parameter adjustment does not alter the ADMM
convergence as long as it is performed finitely many times.

B. Optimization with respect to A
With the assumptions made in paragraph II-B, optimizing
the cost function J with respect to A under the constraints
(3) is equivalent to solving the following problems
" . { % lyn — (M + dMn)anng + ap(ay)
a, = arg min
an s.t. a, =~ Og, a,TLlK =1
2D
After introducing the splitting variables wi € RX for
n= 1,..., N such that

Ix —Ix _ (0
(1£>a”+<o£>w" ( 1)
—— —— ——r

Q R s

(22)

the resulting scaled augmented Lagrangian is expressed as

1
E;ALA) (an7 ngA)7 AE’LA)) = 5 ||y7l - (M + dMW)aWH;

(A) 2

+ - ||Qa, + Rwi® —s+ A (23)
2
+ag(an) + Ig: (W;A))
(A)

with py, 7 > 0. The resulting algorithm (step a of Algo. 1) is
detailed in Algo. 2, and the solution to each sub-problem is
given in Appendix B.



C. Optimization with respect to M

Similarly to Paragraph III-B, optimizing J with respect to
M under the constraint (3) is equivalent to solving

3 H% —myA — SZHE + By (my)

m; = arg min

my

st. for n=1,...,N
m, - 0%, my+dm,, - 0%
(24)
where m, denotes the ¢th row of M. Introducing the splitting

variables W™ € RV+DXK for ¢ = 1., L such that

Ok
dml,g
<1>ﬁu—W§M):— (25)
1y
—— —
e dmy
—_———
F,

the associated scaled augmented Lagrangian can be written

~ 1~ - ~ |12
£y (e W A) — 3

2
M(M) M M) ||2 6
+ & Heﬁu—\w ) F+ Al >HF (26)
_ (M)
+5¢(m£>+zs;+l7k( ¢ )
(M)

with ;" > 0. The resulting algorithm (step b of Algo. 1) is
similar to Algo. 2. The solution to the optimization problems
depends on the selected endmember penalizing function ¥
chosen in paragraph II-B2 (see Appendix B for more details).

D. Optimization with respect to dM

Finally, optimizing 7 with respect to dIM under the con-
straint (3) is equivalent to solving the sub-problems

% HYn - (M + dM'rb)anHE
+yv(dMn)
M +dM,, = 0,

dM, = arg min 27)

dM,,
S.t.

Introducing the splitting variables WSLdM) =M + dM,, for
n = 1,..., N, the resulting scaled augmented Lagrangian is
given by

1
£, o (AM,, WM AL ) = 2y, — (M + dM )3

(aM)
+ B

HdMn M- WM Ang>H2
F

+y0(dM,) + Zgp (wgldM))
(28)

with u%dM) > (. The resulting algorithm (step ¢ of Algo. 1)

is similar to Algo. 2. The solution to these problems is given
in Appendix B.

The optimization procedures detailed above are performed
sequentially until the stopping criterion is satisfied. The next
sections evaluate the performance of the resulting unmixing
strategy via several experiments conducted on synthetic and
real data.

E. Convergence and computational cost

The alternating scheme proposed in Alg. 1 is nothing but a
block coordinate descent descent (BCD) which is guaranteed
to converge to a stationary point of the objective function
J as long as each sub-problem is exactly minimized [25,
Proposition 2.7.1]. Besides, the sub-problems tackled in III-B,
III-C and III-D are strongly convex, hence the convergence
of the ADMM steps toward the unique minimum of each
independent sub-problem when the augmented Lagrangian
parameter has a constant value (see for instance [24]). The
same convergence result applies to the ADMM with the
parameter adjustment introduced in Paragraph III-A as long
as the parameter is updated finitely many times [24]. We
may however mention that the proximal alternating linearized
minimization (PALM) [26] could also be directly applied to the
considered problem with a rigorous convergence proof based
on the Kurdyka-Lojasiewicz property. This alternative work
has been presented in [27].

Considering the significant number of unknown parameters
and the simple expression of the ADMM updates detailed
in Appendix B, we can note that the computational cost is
dominated by matrix products, yielding an overall O(LK2N)
computational cost.

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers four images of size 128 x 64
acquired in 413 bands. Each image corresponds to a mixture
of K endmembers with K € {3,6} in presence or absence
of pure pixels (the absence of pure pixels is considered to
evaluate the algorithm performance in a very challenging
scenario). The synthetic linear mixtures have been corrupted
by additive white Gaussian noise to ensure the signal-to-noise
ratio is SNR = 30dB. Since no accepted variability model is
available in the literature, we propose the following generation
procedure to introduce controlled spectral variability. The cor-
rupted endmembers involved in the mixture (see Fig. 2) have
been generated using the product of reference endmembers
with randomly drawn piece-wise affine functions, providing
realistic perturbed endmembers as represented in Fig. 1. For
a given variability coefficient cy,r > 0 fixed by the user, the
parameters &;, ¢ € {1,2,3} and Ly € {1, ..., L} introduced
in Fig. 1 have been generated as follows

(29)
(30)

gi ~ u[l—cvar/Q,l-&-cw/Q]v (S {17 27 3}
Lbreak = LL/2 + LLU/?’JJv U~ N(()) 1)

where | -] denotes the floor operator. The synthetic data used
in the proposed experiments have been generated with a
value of c,, that is lower in the upper half of the image
(cyar = 0.1) than in the lower half (cy,; = 0.25). Some
instances of the corresponding perturbed endmember spectra
are depicted in Fig. 2. Note that different affine functions have
been considered for different endmembers and different pixels.

A. State-of-the-art methods

The results of the proposed algorithm have been compared
to those obtained with two classical linear unmixing methods
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Fig. 1. Example of a randomly-generated affine function used to generate the
synthetically perturbed endmembers.

(VCA/FCLS, SISAL/FCLS) and two variability accounting
algorithms (AEB, FDNS). These methods are recalled below
with their most relevant implementation details.

1) Classical unmixing methods (no variability)

¢ VCA/FCLS: the endmembers are first extracted
using the vertex component analysis [28]. The abun-
dances are then estimated for each pixel using the
fully constrained least squares (FCLS) algorithm
[29]);

o SISAL/FCLS: the endmembers are first extracted
using the simplex identification via split augmented
Lagrangian [9]. The tolerance for the stopping rule
has been set to 1072 and VCA has been used
as an initialization step. The abundances are then
estimated for each pixel using FCLS.

2) Variability accounting unmixing methods

« AEB [5], [30], [31]: the size of the bundles is equal
to 25% of the total pixel number. The endmembers
and abundance are estimated using VCA/FCLS;

o FDNS [6]: the endmembers and abundances are
estimated by VCA/FCLS ;

« Proposed method (BCD/ADMM): endmembers and
abundances have been initialized with VCA/FCLS
estimates. Note that VCA/FCLS is a method assum-
ing that there are pure pixels in the image, which
can be problematic in case the imaged scene does
not satisfy this assumption. The variability matrices
have been initialized with all their entries equal to
eps'. The algorithm is stopped when the relative
difference between two successive values of the
objective function is less than 1073,

Different penalization combinations have been compared
for the proposed method. The abbreviations ss, mv and
vea are used for spatially smooth, minimum volume and
minimum distance to VCA in the following. The absence of
any additional abbreviation means that the method does not
include any abundance or endmember penalization term.

The performance of the algorithm has been assessed in
terms of endmember estimation using the average spectral

'MATLAB constant eps = 2.22 x 10716,

0.5
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Fig. 2. Reference endmembers (red lines) and 20 corresponding instances
under spectral variability (blue dotted lines) involved in the synthetic data
experiments.

TABLE II
ADMM PARAMETERS.

Synthetic data  Real data

iner 1.1 1.1
deer 1.1 1.1
o 10 10
/"STA)(O) 1074 1074
H(M)(O) 1078 1078

o M)(0) 1074 1074
Eabs 1071 1072
grel 10-4 10-4

angle mapper (aSAM)

aSAM(M

(vt
Zarccos
([ 2| g [

as well as in terms of abundance and perturbation estimation
by global mean square errors (GMSEs)

GMSE(A) = ——[| A — A}

GMSE(dM) = —dM, |2

1 N
n=1

As a measure of fit, the following reconstruction error (RE)
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Fig. 3. True abundances (fig. 3a to 3c) and the ssmvBCD/ADMM-estimations
(fig. 3d to 4c) — obtained with a synthetic dataset (no pure pixels, K = 3).
The spatial distribution of the variability with respect to each endmember is
presented in terms of energy (ﬁ |[dm,, & ||2 for the kth endmember in the
nth pixel) for visualization purpose in Figs. 3g to 3i.

0.000

(i) Variability 3

has been also considered
RE= L |ly - ¥
LN H B HF

where Y is the matrix formed of the pixels reconstructed using
the parameters estimated by the algorithm.

B. Results

The parameters used for the ADMM algorithms are detailed
in Table II, and the values chosen by cross-validation for «,
[ and ~y are reported in Table III and IV. The performance
measures returned by the unmixing methods are provided in
Table III for the datasets containing pure pixels, and in Table
IV for images without pure pixels, leading to the following
conclusions.

e The proposed method is robust to the absence of pure
pixels;

o The proposed method provides competitive results in
terms of aSAM while allowing endmember variability
to be estimated for each endmember in each pixel;

o For most simulation scenarios, the abundance MSEs and
the REs are lower than the MSEs and REs resulting from
state-of-the-art methods;
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Fig. 4. Endmember estimations obtained on synthetic data in absence of pure
pixels (cf. Figs. 3 for the abundance estimations). The ssmvBCD/ADMM-
estimated endmembers (red lines) are given with typical examples of the
estimated variability (cyan dotted lines). The VCA endmembers are given
in blue dotted lines for comparison.

o The proposed method is computationally more expensive
than existing algorithms.

We can note that the smoothness penalization on the abun-
dances proves to be particularly appropriate in this experiment.
Moreover, an increasing number of endmembers implies a loss
of estimation performance. This result can be expected since
VCA/FCLS algorithm is used as an initialization step.

Finally, the variability captured by the proposed model
is presented in Figs. 3 and 4 for three endmembers: the
difference between the variability intensities detected in the
upper and the lower part of the scene is due to the different
variability coefficients applied to these areas, thus illustrating
the consistency of the proposed method.

V. EXPERIMENT WITH REAL DATA

A. Description of the datasets

The proposed algorithm has been applied to real hyper-
spectral datasets obtained by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS). The first scene was acquired
over Moffett Field, CA, in 1997. Water absorption bands were
removed from the 224 spectral bands, leaving 189 exploitable
spectral bands. The scene of interest (50 x 50) is partly
composed of a lake and a coastal area.

The second scene is a 190 x 250 image extracted from the
well-known Cuprite dataset®>. The number of spectral bands is
189 after removing the water-absorption and low SNR bands.
Many works previously conducted on this image provide
reference abundance estimation maps.

>The Moffett and Cuprite images are available at http://www.ehu.es/
ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes, and http://
aviris.jpl.nasa.gov/



TABLE III
SIMULATION RESULTS FOR SYNTHETIC DATA IN PRESENCE OF PURE PIXELS (GMSE(A)x10~2, GMSE(dM)x10~%, RE x10~%, v=1).

K =3, (a,B) = (1.4,2.5 x 1073)

K =6, (o, 8) = (0.37,5.1 x 107%)

aSAM(M) (°) GMSE(A) GMSE(M) RE time (s) | aSAM(M) (°) GMSE(A) GMSE(M) RE time (5)
VCA/FCLS 6.0038 3.80 / 7.56 1 6.3313 2.24 / 2.92 1
SISAL 5.2665 3.08 / 3.35 2 3.8365 3.05 / 2.25 3
FDNS 6.0038 3.79 / 7.56 4 6.3313 2.22 / 2.92 5
AEB 5.6971 2.07 / 3.50 52 57017 1.31 / 2.40 142
BCD/ADMM 5.9910 3.51 4.00 0.20 92 6.2965 1.59 2.93 005 230
ssBCD/ADMM 5.7765 3.15 425 023 422 6.0304 1.44 2.97 0.07 848
ssmvBCD/ADMM 5.4390 3.01 4.25 0.25 530 6.3397 1.42 2.97 007 603
TABLE IV

SIMULATION RESULTS FOR SYNTHETIC DATA IN ABSENCE OF PURE PIXELS (GMSE(A)x10~2, GMSE(dM)x10~4, RE x10~4, v = 1).

K =3, (a,8) = (24.5,4.2 x 1079)

K =6, (o, 8) = (0.71,4.8 x 107%)

aSAM(M) ()  GMSE(A) GMSE(M) RE time (s) | aSAM(M) (°) GMSE(A) GMSE(M) RE time (s)
VCA/FCLS 5.0639 2.07 / 266 1 6.5530 2.52 / 2.82 4
SISAL 44318 2.16 / 256 2 6.0431 1.63 / 2.02 5
FDNS 5.0639 2.06 / 266 3 6.5530 2.53 / 2.82 7
AEB 5.1104 2.11 / 266 33 6.0016 1.78 / 185 208
BCD/ADMM 5.2480 2.13 381 025 140 6.2785 2.14 3.33 030 3041
ssBCD/ADMM 4.1549 144 436 038 1263 6.2763 174 3.04 0.076 1527
ssmvBCD/ADMM 5.0584 1.94 459 047 1667 6.3207 1.67 3.05 008 795

The parameters used for the proposed approach are identical
to those used for the experiments with synthetic data (see Table
II). The only difference is that the algorithm has been stopped
when the relative difference between two successive values
of the objective function is less than 10~2. This value has
been chosen to obtain a compromise between the estimation
accuracy and the computational cost implied. The values
selected by cross-validation for «, 8 and +y are given in Table
V.

TABLE V
EXPERIMENT RESULTS CONDUCTED ON REAL DATA [SSBCD/ADMM FOR
MOFFETT WITH («, 8) = (0.05,0), SSVCABCD/ADMM FOR CUPRITE
WITH (a, 8) = (0.014,404), RE x10~4,y = 1].

Moffett Cuprite
RE time(s) | RE time (s)
VCA/FCLS 2.50 0.4 3.69 9.9
SISAL 1.12 30 2.16 15
FDNS 2.69 1 3.69 11
AEB 6.25 10 0.40 615
BCD/ADMM  0.18 144 0.23 1.9¢4
B. Results

The unmixing performance are reported in Table V. For
the Moffett image, the variability detected by the proposed
algorithm is displayed in Figs. 5 and 6. The variability seems
to be more significant on the coastal area where the mixture
is not appropriately described by a linear model. The potential
non-linearities usually observed close to the coastal areas [32]—
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