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A brief introduction to hyperspectral unmixing

Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20m × 20m);

Observations: mixture of several spectra corresponding to distinct
materials (endmembers);

Endmembers present in unknown proportions in each pixel (abundance,
quantitative spatial mapping).

Figure 1: Hyperspectral unmixing: an illustration (taken from [1]).
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Linear mixture model

Linear mixture model

Traditionally, observations are represented by a linear combination of the
unknown endmembers [1]

∀n ∈ {1, . . .N}, yn =
R∑

r=1

arnmr + bn (1)

Y = MA+ B (2)

Constraints (physical interpretability)

A � 0R,N , A
T
1R = 1N , M � 0L,R (3)

Several models are available in the literature to capture more complex
interations between light and matter [2, 3, 4, 5] (e.g. multiple reflections).

A given material is assumed to be fully characterized by a single signature.
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Endmember variability

Endmembers possibly affected by local environmental factors, varying
acquisition conditions: spectral variability;
Spatial variability: significant source of errors when estimating the
abundance coefficients;
Error propagation within unsupervised unmixing procedures ⇒ need for
appropriate models.

(a) Spatial variability (inter-pixel) (b) Endmember variability1

Figure 2: Endmember spatial variability: an illustration.

1P. Gader, A. Zare, R. Close, J. Aitken, G. Tuell, MUUFL Gulfport Hyperspectral and LiDAR
Airborne Data Set, University of Florida, Gainesville, FL, Tech. Rep. REP-2013-570, Oct. 2013.
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Temporal endmember variability

Variability: a prominent issue when considering multi-temporal
hyperspectral (MTHS) images

⊲ varying acquisition conditions;
⊲ natural evolution of the scene (e.g. water, vegetation).

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 3: An example of a sequence of hyperspectral images, acquired at different time
instants.
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Variability accounting methods

Essentially two modeling paradigms

Automated endmember bundles (AEB) [6, 7, 8]

⊲ unmixing relies on spectral libraries, either extracted from the data or
a priori available.

Normal compositional model (NCM) [9, 10], Beta compositional model
(BCM) [11]

⊲ endmembers modeled as realizations of random vectors.

Figure 4: Different representations of endmember variability within the simplex
enclosing the data (image taken from [10]).
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Overview

1 Introduction to hyperspectral unmixing and variability

2 Unmixing of multi-temporal hyperspectral images
Context and motivations
A hierarchical Bayesian model

3 Experiments

4 Conclusion
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Context and motivations

Observations:

some of the observed materials present moderate variations across time
(man-made constructions, ...);

signatures corresponding to materials present in the different images

⊲ realizations of reference endmembers ⇒ variability;

abrupt variations may occur (e.g., when water or vegetation are present in
the observed scene)

⊲ new material or a sensor default ⇒ abrupt spectral changes ⇒ outlier
w.r.t. the commonly shared materials.

Proposed approach:

◮ unmix a reference HS image to obtain an initial estimate for the
endmembers;

◮ use / refine this result when unmixing the remaining images.

Model:

◮ represent smooth endmember variations as temporal variability;

◮ interpret abrupt spectral variations in terms of outliers.
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Model

Model and constraints

Yt = (M+ dMt)At + Xt + Bt (4)

At � 0R,N , A
T
t 1R = 1N , ∀t ∈ {1, . . . ,T}

M � 0L,R , M+ dMt � 0L,R , Xt � 0L,N

(5)

Likelihood function

p(Y
¯
| Θ) ∝

T∏

t=1

(σ2
t )

−NL/2 exp

(
−

1

2σ2
t

‖Yt − (M+ dMt)At − Xt‖
2
F

)

where Θ = {M, dM
¯
,A
¯
,X
¯
,Z,σ2,Ψ2, s2}

Objective: infer Θ from Y
¯
using p(Θ | Y

¯
) ⇒ need for priors on the different

parameters/hyperparameters involved in the model.
Parameter estimation: MCMC algorithm (Gibbs sampler) used to build
estimators of the parameters of interest.
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Hierarchical Bayesian model

Y
¯

M

ξ

dM
¯
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¯

ε2

X
¯
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Figure 5: Description of the proposed Bayesian model using a directed acyclic graph
(fixed parameters appear in boxes).
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Hierachical Bayesian model: priors (I)

Abundance prior

◮ promotes smooth abundance variations (except when the corresponding
pixel contains outliers)

◮ abundance sum-to-one constraint relaxed (aTn,t1R ≤ 1) when outliers are
present in the pixel (n, t) (apparition of new materials)

an,1 | xn,t = 0L ∼ USR

an,t | xn,t 6= 0L ∼ US̃R
, for t = 1, . . . ,T

p
(
an,t | xn,t = 0L,A

¯\{an,t}

)
∝ exp

{
−

1

2ε2n

(
[T 1

n,t 6= ∅]‖an,t − an,τ1
n,t
‖22
)}

1SR
(an,t), for t ≥ 2

with

SR = {x ∈ R
R | ∀i , xi ≥ 0 and x

T
1R = 1}

S̃R = {x ∈ R
R | ∀i , xi ≥ 0 and x

T
1R ≤ 1}

T
1
n,t = {τ < t | zn,τ = 0} , τ

1
n,t = max

τ∈T 1
n,t

τ.
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Hierachical Bayesian model: priors (II)

Outlier prior

◮ promotes outlier sparsity [12, 13, 14, 15, 16];

◮ takes advantage of possible spatial correlations between these outliers by
modeling zt ∈ R

N as Ising-Markov random fields (correlations likely to
occur when new materials appear).

p(xn,t | zn,t , s
2
t ) = (1− zn,t)δ(xn,t) + zn,t NR

L
+
(0L, s

2
t )

Variability prior

◮ promotes smooth endmember variations from an image to another [17, 18]

dmℓ,r,1 | mℓ,r ∼ NIℓ,r (0, ν), Iℓ,r = [−mℓ,r ,+∞)

dmℓ,r,t |mℓ,r , dmℓ,r,(t−1), ψ
2
ℓ,r ∼ NIℓ,r

(
dmℓ,r,(t−1), ψ

2
ℓ,r

)

ν penalizes the variability energy in the first image;

ψ2
ℓ,r controls the temporal evolution of the variability.
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Parameter estimation

Algorithm 1: Proposed Gibbs sampler.

Input: Nbi, NMC, Θ
(0), β, ξ, aΨ, bΨ, as, bs, aσ , bσ , ν, ε

2.
for q = 1 to NMC do

for (n, t) = (1, 1) to (N,T ) do

Draw a
(q)
n,t ∼ p

(
an,t | yn,t ,Θ\{an,t}

)
;

for r = 1 to R do

Draw e(q)r ∼ p
(
er | Y

¯
,Θ\{er}

)
;

for t = 1 to T do

Draw dM
(q)
t ∼ p

(
dMt | Yt ,Θ\{dMt}

)
;

for (n, t) = (1, 1) to (N,T ) do

Draw z
(q)
n,t ∼ P

[
zn,t | yn,t ,Θ\{zn,t}

]
;

Draw x
(q)
n,t ∼ p

(
xn,t | Θ\{xn,t}

)
;

for t = 1 to T do

Draw s
2(q)
t ∼ p

(
s2t | Θ

\{s2t }

)
;

for t = 1 to T do

Draw σ
2(q)
t ∼ p

(
σ2
t | Θ

\{σ2t }

)
;

for (ℓ, r) = (1, 1) to (L,R) do

Draw ψ
2(q)
ℓ,r

∼ p
(
ψ2
ℓ,r | Θ

\{ψ2
ℓ,r

}

)
;

Result:
{
Θ(q)

}NMC
q=1

.
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Overview

1 Introduction to hyperspectral unmixing and variability

2 Unmixing of multi-temporal hyperspectral images

3 Experiments
Experiments on synthetic data
Results on synthetic data

4 Conclusion
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Experiments on synthetic data

Data generation:

MTHS image composed of 20 HS images of size 30 × 30, L = 212 bands,
affected by smooth time-varying variability and additive white Gaussian
noise;

renders the emergence of a previously undetected material in a few pixels
within specific images ⇒ outliers.

Algorithmic setting:

X
(0)
t = 0L,N , dM

(0)
t = 0L,R , z

(0)
n,t = 0, σ

2(0)
t = 10−4, ψ

2(0)
ℓ,r = 10−6,

s
2(0)
t = 5× 10−3;

numerical constants: βt = 1.9, εn = 10−4, ν = 10−5;

NMC = 400 M-C iterations, with Nbi = 350 burn-in iterations.

Table 1: Simulation results obtained on synthetic data (GMSE(A)×10−2,
GMSE(dM)×10−3, RE ×10−3).

aSAM(M) (➦) GMSE(A) GMSE(dM) RE time (s)

R
=

3

VCA/FCLS 14.0 1.23 / 3.20 1

SISAL/FCLS 11.9 2.40 / 0.47 2
rLMM 14.5 1.52 / 0.04 238
OU 12.9 0.30 1.64 0.26 58
Proposed (MCMC) 8.03 0.17 0.20 0.11 1590
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Results on synthetic data (I)
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Figure 6: Abundance maps estimated for the third endmember for t = 1 to 6. The
areas corrupted by outliers are delineated in red.
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Results on synthetic data (II)
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Figure 7: Ground truth (first row) and estimated labels (second row) obtained with
the proposed method for t = 1 to 10, where each column corresponds to a time
instant [0 in black, 1 in white].
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Figure 8: Map of the re-scaled abundance estimation errors for the third endmember
at time t = 2 (from left to right: true abundances, estimation error of VCA/FCLS,
SISAL/FCLS, rLMM, OU and the proposed method). Except for the proposed
method, the results exhibit notable errors in pixels corrupted by outliers (area in red).
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Results on synthetic data (III)

(a) True (b) True (c) True

(d) SISAL (e) SISAL (f) SISAL

(g) rLMM (h) rLMM (i) rLMM

Figure 9: Endmembers (red lines) and endmember + variability (blue dotted lines)
extracted from the synthetic mixture by the compared methods (in row).
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Results on synthetic data (IV) Results on real data

(a) True (b) True (c) True

(d) OU (e) OU (f) OU

(g) MCMC (h) MCMC (i) MCMC

Figure 10: Endmembers (red lines) and endmember + variability (blue dotted lines)
extracted from the synthetic mixture by the compared methods (in row).
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Overview

1 Introduction to hyperspectral unmixing and variability

2 Unmixing of multi-temporal hyperspectral images

3 Experiments

4 Conclusion
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Conclusion and perspectives

Proposed approach

◮ development of an unmixing approach accounting for both smooth and
abrupt spectral variations, formulated within a Bayesian framework.

Research perspectives

⊲ application to real datasets in various contexts;

⊲ development of unmixing algorithms scaling with the problem’s dimension
(e.g., distributed optimization algorithms): ongoing work;

⊲ incorporating data from different sensors to improve unmixing results [19]
(possibly relying on fusion techniques [20]).

Thank you for your attention !
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Endmember prior

◮ endmembers can be a priori considered to live in a subspace of dimension
K ≪ L (PCA or rPCA [21]);

◮ considering the decomposition used in [22] leads to

mr = (IL −UU
T)ȳ +Uer , U

T
U = IK

where U is a basis of the subspace and ȳ is the sample mean of Y
¯
;

◮ projected endmembers er are assigned a truncated multivariate Gaussian
prior to ensure the non-negativity of mr

er ∼ NEr (0K , ξIK ), for r = 1, . . . ,R. (6)

Hyperparameter priors

◮ conjugate inverse-gamma priors assigned to the noise (σ2), the variability
(Ψ2) and the outlier (s2) variances, i.e.,

σ
2
t ∼ IG(aσ, bσ), ψ

2
ℓ,r ∼ IG(aΨ, bΨ), s

2
t ∼ IG(as, bs) (7)

where aσ = bσ = aΨ = bΨ = as = bs = 10−3.
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(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 13/10/15

Figure 11: Scenes used in the experiment, given with their respective acquisition date.
The area delineated in red in Fig. 11e highlights a region known to contain outliers
(this observation results from a previous analysis led on this dataset in [23]).
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Figure 12: Soil abundance map recovered by the different methods (in row) at each
time instant (in column) [VCA/FCLS, SISAL/FCLS, rLMM, OU, MCMC].
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Figure 13: Water abundance map recovered by the different methods (in row) at each
time instant (in column) [VCA/FCLS, SISAL/FCLS, rLMM, OU, MCMC].
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Figure 14: Vegetation abundance map recovered by the different methods (in row) at
each time instant (in column) [VCA/FCLS, SISAL/FCLS, rLMM, OU, MCMC].
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Figure 15: Outlier energy recovered by rLMM [24] and the proposed MCMC method.
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Figure 16: Non-linearity maps estimated by [25] applied to each image with the
SISAL-extracted endmembers.
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(a) Soil (VCA) (b) Water (VCA) (c) Veg. (VCA)

(d) Soil (SISAL) (e) Water (SISAL) (f) Veg. (SISAL)

(g) MCMC (h) MCMC (i) MCMC

Figure 17: Extracted endmembers (mr , red lines) and perturbed endmembers
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(a) Soil (rLMM) (b) Water (rLMM) (c) Veg. (rLMM)

(d) Soil (OU) (e) Water (OU) (f) Veg. (OU)

Figure 18: Extracted endmembers (mr , red lines) and perturbed endmembers
(mr + dmr,t , blue dotted lines).
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Table 2: Simulation results on real data (RE ×10−4).

RE time (s)
R

=
3

VCA/FCLS 11.73 1

SISAL/FCLS 2.38 2
rLMM 0.66 106
OU 2.08 26
Proposed 0.19 3700
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