Simulations sur données synthétiques 00000

Une approche distribuée asynchrone pour la factorisation en matrices non-négatives – Application au démélange hyperspectral

Pierre-Antoine Thouvenin, Nicolas Dobigeon and Jean-Yves Tourneret

University of Toulouse, IRIT/INP-ENSEEIHT

XXVIe Colloque GRETSI, Juan-les-Pins, France

8 Septembre 2017

Une approche distribuée asynchrone

Simulations sur données synthétiques 00000

Contexte

Image hyperspectrale

• même scène observée à plusieurs longueurs d'onde,

Jne approche distribuée asynchrone

Simulations sur données synthétiques 00000 Conclusion et perspectives

Contexte

Image hyperspectrale

• même scène observée à plusieurs longueurs d'onde,

Cube hyperspectral

Une approche distribuée asynchrone

Simulations sur données synthétiques 00000

Contexte

Image hyperspectrale

- même scène observée à plusieurs longueurs d'onde,
- pixel représenté par un vecteur de plusieurs centaines de mesures.

Jne approche distribuée asynchrone

Simulations sur données synthétiques 00000

Contexte

Image hyperspectrale

- même scène observée à plusieurs longueurs d'onde,
- pixel représenté par un vecteur de plusieurs centaines de mesures.

Cube hyperspectral Soil keflecta Wavelength Water effectanc Wavelength L spectral bands Vegetation Reflectance Wavelength

P.-A. Thouvenin, N. Dobigeon, J.-Y. Tourneret

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Démélange spectral

Modèle de mélange linéaire :
$$\mathbf{y}_n = \sum_{r=1}^R a_{n,r} \mathbf{m}_r + \mathbf{b}_n$$

Référence : IEEE Signal Proc. Magazine, Jan. 2002.

Jne approche distribuée asynchrone

Simulations sur données synthétiques

Démélange spectral

$$\mathbf{b}_n = \sum_{r=1}^R a_{n,r} \mathbf{m}_r + \mathbf{b}_n$$

•
$$L=825~(0.4\mu \mathrm{m}
ightarrow 2.5\mu \mathrm{m})$$
,

- *R* = 3 :
 - herbe verte (trait plein),
 - métal galvanisé (tirets),
 - brique rouge (pointillés),

•
$$\mathbf{a}_n = [0.3, 0.6, 0.1]^T$$
,

• SNR ≈ 20 dB.

Jne approche distribuée asynchrone

Simulations sur données synthétiques

Démélange spectral

•
$$L=825~(0.4\mu\mathrm{m}
ightarrow2.5\mu\mathrm{m})$$
,

- *R* = 3 :
 - herbe verte (trait plein),
 - métal galvanisé (tirets),
 - brique rouge (pointillés),

•
$$\mathbf{a}_n = [0.3, 0.6, 0.1]^T$$
,

• SNR ≈ 20 dB.

Formulation du problème

Estimation de \mathbf{a}_n sous des contraintes de positivité et additivité et $\mathbf{m}_1, \ldots, \mathbf{m}_R$ sous des contraintes positivité.

P.-A. Thouvenin, N. Dobigeon, J.-Y. Tourneret

Démélange distribué asynchrone

Introduction	Une approche distribuée asynchrone
00000000	
Motivations	

Simulations sur données synthétiques 00000

Conclusion et perspectives

 Images composées d'un grand nombre de pixels ⇒ mise en œuvre de procédures d'estimation distribuées

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Contexte de distribution des données

 FIGURE 2 – Image hyperspectrale scindée en plusieurs sous-blocs, assignés chacun à un nœud esclave

 $\rm Figure~3-Collection$ d'images hyperspectrales, dont chacune est assignée à un nœud esclave

P.-A. Thouvenin, N. Dobigeon, J.-Y. Tourneret

Introduction	Une approche distribuée asynchrone
000000000	
Motivations	

Simulations sur données synthétiques 00000

 Images composées d'un grand nombre de pixels ⇒ mise en œuvre de procédures d'estimation distribuées

Introduction
0000000000

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Motivations

- Images composées d'un grand nombre de pixels ⇒ mise en œuvre de procédures d'estimation distribuées
 - ▷ architecture de type maître-esclave;

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Motivations

- Images composées d'un grand nombre de pixels ⇒ mise en œuvre de procédures d'estimation distribuées
 - ▷ architecture de type maître-esclave;
- Asynchronicité : permet d'exploiter les différences de performance entre machines/processeurs utilisés, réduisant le temps de calcul nécessaire par rapport à un algo. synchrone;

FIGURE 4 – Exemples de comportement d'un algorithme synchrone et asynchrone (temps d'attente en blanc, transmission en gris clair, traitement en gris).

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Motivations

- Images composées d'un grand nombre de pixels ⇒ mise en œuvre de procédures d'estimation distribuées
 - ▷ architecture de type maître-esclave;
- Asynchronicité : permet d'exploiter les différences de performance entre machines/processeurs utilisés, réduisant le temps de calcul nécessaire par rapport à un algo. synchrone;

FIGURE 4 – Exemples de comportement d'un algorithme synchrone et asynchrone (temps d'attente en blanc, transmission en gris clair, traitement en gris).

- Grand nombre de méthodes asynchrones récemment proposées dans la littérature [1]–[11]
 - ▷ nombre limité de méthodes d'estimation proposées pour le démélange hyperspectral, toutes synchrones [12]–[14].

Mise en œuvre d'un algorithme de démélange asynchrone inspiré de l'algorithme PALM [15], [16]

- cadre adapté au démélange, pour lequel des garanties de convergence sont disponibles [15]–[17];
- la version standard de l'algo. se prête facilement à la mise en place d'une procédure distribuée synchrone;
- cadre approprié pour évaluer l'intérêt de l'asynchronicité.

Plan de la présentation

Introduction

- Introduction
- Motivations

2 Une approche distribuée asynchrone

- Modèle de mélange
- Formulation du problème
- Démélange en présence de variabilité spectrale
- Algorithme de démélange distribué asynchrone
- Simulations sur données synthétiques
 - Simulations en l'absence de variabilité
 - Simulations en présence de variabilité

4 Conclusion et perspectives

Plan de la présentation

Introduction

- Introduction
- Motivations

2 Une approche distribuée asynchrone

- Modèle de mélange
- Formulation du problème
- Démélange en présence de variabilité spectrale
- Algorithme de démélange distribué asynchrone

3 Simulations sur données synthétiques

- Simulations en l'absence de variabilité
- Simulations en présence de variabilité

Conclusion et perspectives

Introduction 000000000	Une approche distribuée asynchrone ●○○○○○○	
Modèle de	mélange	

Modèle de mélange linéaire (MML)

- Les N pixels y_n sont représentés par une combinaison convexe de R spectres purs m_r [18];
- Données regroupées en *I* < *N* groupes disjoints de *J* pixels;

$$\forall i \in \{1, \dots, I\}, \ \mathbf{Y}_i = \mathbf{M}\mathbf{A}_i + \mathbf{B}_i \tag{1}$$

Contraintes :

$$\mathbf{A}_{i}^{\mathsf{T}}\mathbf{1}_{R}=\mathbf{1}_{J}, \quad \mathbf{A}_{i}\succeq\mathbf{0}_{R,J,}, \quad \mathbf{M}\succeq\mathbf{0}_{L,R}$$
(2)

Remarques :

- analyse d'une image scindée en différents blocs, ou d'une collections d'images composées des mêmes spectres purs (*e.g.*, données multi-temporelles);
- l'estimation des coefficients d'abondance peut s'effectuer en parallèle.

000000000	

Une approche distribuée asynchrone

Simulations sur données synthétiques

Formulation du problème

Problème de démélange

$$(\mathbf{A}^{*}, \mathbf{M}^{*}) \in \underset{\mathbf{A}, \mathbf{M}}{\operatorname{arg min}} \left\{ F(\mathbf{A}, \mathbf{M}) + g(\mathbf{A}) + \iota_{\mathcal{A}_{R,N}}(\mathbf{A}) + h(\mathbf{M}) + \iota_{\{\cdot \geq \mathbf{0}\}}(\mathbf{M}) \right\} \quad \text{avec}$$

$$F(\mathbf{A}, \mathbf{M}) = \sum_{i=1}^{l} f_{i}(\mathbf{M}, \mathbf{A}_{i}) = \frac{1}{2} \sum_{i=1}^{l} \|\mathbf{Y}_{i} - \mathbf{M}\mathbf{A}_{i}\|_{\mathrm{F}}^{2}$$

$$\mathcal{A}_{R,J} = \left\{ \mathbf{A} \in \mathbb{R}^{R \times J} : \mathbf{a}_{n} \in \mathcal{S}_{R}, \forall n \in \{1, \cdots, J\} \right\}$$

$$\mathcal{S}_{R} = \left\{ \mathbf{x} \in \mathbb{R}^{R} : \mathbf{x}_{r} \geq 0 \text{ et } \mathbf{x}^{\mathsf{T}} \mathbf{1}_{R} = 1 \right\}$$

$$(3)$$

- $\iota_{\mathcal{S}}$: indicatrice de l'ensemble \mathcal{S} ($\iota_{\mathcal{S}} = 0$ si $\mathbf{x} \in \mathcal{S}$, $+\infty$ sinon)
- g et h : pénalités convexes appropriées
 - ▷ de façon générale : g et h séparables pour distribuer la résolution de (3).
 - \triangleright par la suite : g = 0, h distance mutuelle entre les spectres purs [19].

• Les spectres purs peuvent présenter une variabilité spectrale significative en fonction des conditions d'acquisition (illumination, ...)

FIGURE 5 – Illustration de la variabilité des spectres purs (extraite de [20]).

• Les spectres purs peuvent présenter une variabilité spectrale significative en fonction des conditions d'acquisition (illumination, ...)

FIGURE 5 – Illustration de la variabilité des spectres purs (extraite de [20]).

- \Rightarrow possibles erreurs d'estimations, propagées dans le cadre de procédures non-supervisées ;
- ⇒ variabilité prise en compte à l'aide d'un modèle de mélange linéaire perturbé [21];
- Estimation des coefficients d'abondance et des termes de variabilité en parallèle.

Introduction Une approche distribuée asynchrone Simulations sur données synthétiques Conclusion et perspective

Modèle de mélange linéaire perturbé (MMLP)

$$\mathbf{y}_n = \sum_{r=1}^{R} (\mathbf{m}_r + \mathbf{d}\mathbf{m}_{r,n}) \mathbf{a}_{r,n} + \mathbf{b}_n \tag{4}$$

Contrainte additionnelle :

$$\|\mathbf{dM}_n\|_{\mathrm{F}}^2 \leq \varepsilon, \text{ où } \mathbf{dM}_n = [\mathbf{dm}_{1,n}, \dots, \mathbf{dm}_{R,n}]$$
(5)

Remarques :

- distribution des données similaire à celle adoptée dans le cas du modèle linéaire;
- l'estimation des coefficients d'abondance et des termes de variabilité peut s'effectuer en parallèle ;
- pas de contrainte de positivité sur les spectres perturbés (limitation lié à l'asynchronie...)
- distribution des données : indifféremment applicable à une image scindée en plusieurs sous-ensembles ou à une collection d'images hyperspectrales.

Distribution des données

- Chaque nœud de calcul responsable de la mise à jour d'un sous-ensemble des coefficients d'abondance ;
- Le nœud maître chargé d'agréger les données des différents nœuds pour la mise à jour des spectres purs.

FIGURE 6 – Illustration de la distribution des variables pour le démélange basé sur le MML (pour I = 3 blocs).

roduction Une approche distribuée asynchrone

Simulations sur données synthétiq 00000 Conclusion et perspectives

Algorithme de démélange distribué asynchrone (MML)

Algorithme 1 : Algorithme du i^{e} nœud esclave.

Données : M, Ã_i.

début

Réception des données mises à jour par le processus maître, (M, \tilde{A}_i) ;

$$\hat{\mathsf{A}}_i \in \mathsf{prox}_{\iota_{\mathcal{A}_{R,J}}} \left(\tilde{\mathsf{A}}_i - \frac{1}{c_{\mathsf{A}_i}} \nabla_{\mathsf{A}_i} f_i(\tilde{\mathsf{A}}_i, \mathsf{M}) \right);$$

Transmission de \hat{A}_i au processus maître;

Résultats : Â_i.

Une approche distribuée asynchrone

Simulations sur données synthétiques

Conclusion et perspectives

Algorithme de démélange distribué asynchrone (MML)

Algorithme 2 : Algorithme du maître. **Données :** A^0 , M^0 , $\mu \in]0, 1[$ ($\mu = 10^{-6}$). $\gamma^0 \leftarrow 1, \ k \leftarrow 0$: tant que critère d'arrêt non satisfait. faire Attente de $\tilde{\mathbf{A}}_{ik}$ provenant de l'un des nœuds ; // Mise à jour des abondances $\mathbf{A}_{i}^{k+1} = \begin{cases} \mathbf{A}_{i}^{k} + \gamma^{k} \big(\tilde{\mathbf{A}}_{i}^{k} - \mathbf{A}_{i}^{k} \big), \ i = i^{k} \\ \mathbf{A}_{i}^{k}, \ i \neq i^{k} \end{cases};$ // Mise à jour des spectres purs $\tilde{\mathbf{M}}^{k} = \operatorname{prox}_{\iota_{f, \succ \mathbf{0}}} \left(\mathbf{M}^{k} - \frac{1}{\nu^{k}} \nabla_{\mathbf{M}} \left[F(\mathbf{A}^{k+1}, \mathbf{M}^{k}) + h(\mathbf{M}^{k}) \right] \right);$ $\mathbf{M}^{k+1} = \mathbf{M}^k + \gamma^k (\tilde{\mathbf{M}}^k - \mathbf{M}^k);$ // Mise à jour du pas de relaxation $\gamma^{k+1} = \gamma^k (1 - \mu \gamma^k):$ // Transmission des résultats au processus i^k Transmettre $(\mathbf{M}^{k+1}, \mathbf{A}^{k+1}_{:k})$ au processus i^k ; $k \leftarrow k + 1;$

Résultats : A^k, M^k.

Algorithme similaire pour le MMLP

Plan de la présentation

Introduction

- Introduction
- Motivations
- 2 Une approche distribuée asynchrone
 - Modèle de mélange
 - Formulation du problème
 - Démélange en présence de variabilité spectrale
 - Algorithme de démélange distribué asynchrone

Simulations sur données synthétiques

- Simulations en l'absence de variabilité
- Simulations en présence de variabilité

- Données : 3 images hyperspectrales, mélanges linéaires de R = 9 spectres purs, L = 413 bandes;
- $\bullet~$ Images : 100 \times 100 pixels, bruit blanc additif gaussien de variance telle que RSB = 30 dB ;
- Évaluation des performances pour *I* = 3 processus;
- Initialisation : VCA [22] / FCLS [23];
- Comparaison de l'algo. avec son analogue synchrone, implantés en Julia [24].

	Sync.	Async.
aSAM(M) (°)	9.74e-01	1.04e+00
GMSE(A)	3.48e-04 5.2	
RE	1.05e-04 1.07e-	
aSAM(Y) (°)	2.23e-02	2.24e-02
temps (s)	1.39e+03	3.33e+02

TABLE 1 – Résultats de simulation sur données synthétiques.

FIGURE 7 – Évolution de la fonction objectif au cours du temps, obtenue avec les différentes versions de l'algorithme PALM (jusqu'à convergence).

Remarques :

- intérêt de l'asynchronie en terme de temps de calcul (pour parvenir à convergence);
- légère dégradation des performances d'estimation.

Simulations sur données synthétiques

Simulations sur données synthétiques (MMLP) (I)

- Données : 3 images hyperspectrales, mélanges linéaires perturbés de R = 3 spectres purs, L = 413 bandes;
- $\bullet~$ Images : 100 \times 100 pixels, bruit blanc additif gaussien de variance telle que RSB = 30 dB ;
- Génération de la variabilité : produit (terme à terme) de chacun des spectres purs de référence avec des fonctions affines par morceaux générées aléatoirement (fonctions différentes pour chacun des pixels et chaque matériau)
 - ▷ obtention de variabilité spatialement et spectralement variable.

FIGURE 8 – Spectres purs de référence (en rouge) et exemples de spectres affectés par la variabilité générée (en cyan).

FIGURE 9 – Évolution de la fonction objectif au cours du temps pour les versions synchrone et asynchrone de l'algorithme PALM (jusqu'à convergence).

Remarques :

- intérêt de l'asynchronie en terme de temps de calcul pour ce problème (pour ce jeu de données certes... mais ce n'est pas toujours le cas);
- en fonction des données, l'algo. peut converger vers un point stationnaire moins intéressant que la version synchrone.

P.-A. Thouvenin, N. Dobigeon, J.-Y. Tourneret

 Introduction
 Une approche distribuée asynchrone
 Simulations sur données synthétiques
 Conclusion et

 O000000
 000000
 00000

 Simulations sur données synthétiques (MMLP) (III)

	Sync.	Async.
aSAM(M) (°)	1.28e+00	1.47e+00
GMSE(A)	6.73e-04	8.52e-04
GMSE(dM)	2.17e-05	2.56e-05
RE	4.08e-05	2.88e-05
aSAM(Y) (°)	1.92e-02	1.57e-02
temps (s)	9.05e+01	0.73

TABLE 2 – Résultats de simulation sur données synthétiques (présence de variabilité).

Plan de la présentation

Introduction

- Introduction
- Motivations
- 2 Une approche distribuée asynchrone
 - Modèle de mélange
 - Formulation du problème
 - Démélange en présence de variabilité spectrale
 - Algorithme de démélange distribué asynchrone
- Simulations sur données synthétiques
 - Simulations en l'absence de variabilité
 - Simulations en présence de variabilité

4 Conclusion et perspectives

Conclusion et perspectives

Travail effectué

- ▶ apport d'une procédure de démélange asynchrone [17] basée sur PALM [15], [16] par rapport à sa version synchrone;
- ▶ intérêt pour le démélange d'images hyperspectrales multi-temporelles.

Perspectives

- ▷ envisager différentes configurations de distribution des données [4], [25]
 - \Rightarrow améliorations de l'algorithme à envisager en présence de variabilité spatiale/temporelle;
- ▷ possibilité d'inclure des opérateurs proximaux approchés [16] ;
- b généralisations à d'autres problèmes de NMF : possibilité de traiter d'autres termes d'attaches aux données (e.g., s'affranchir en partie de l'hypothèse gradient Lipschitz pour le terme différentiable ? [26], [27]).

Merci pour votre attention !

Simulations sur données synthétiques 00000

Une approche distribuée asynchrone pour la factorisation en matrices non-négatives – Application au démélange hyperspectral

Pierre-Antoine Thouvenin, Nicolas Dobigeon and Jean-Yves Tourneret

University of Toulouse, IRIT/INP-ENSEEIHT

XXVIe Colloque GRETSI, Juan-les-Pins, France

8 Septembre 2017

primal-dual decomposition methods for monotone inclusions", *Math. Program., Ser. B*, p. 1–28, 2016.

- [2] Z. PENG, Y. XU, M. YAN et W. YIN, "Arock : an algorithmic framework for asynchronous parallel coordinate updates", *SIAM J. Sci. Comput.*, t. 38, n° 5, p. 2851–2879, sept. 2016.
- [3] P. BIANCHI et J. JAKUBOWICZ, "Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization", *IEEE Trans. Autom. Control*, t. 58, n° 2, p. 391–405, fév. 2013.
- [4] J.-C. PESQUET et A. REPETTI, "A Class of Randomized Primal-Dual Algorithms for Distributed Optimization", *Journal of nonlinear and convex analysis*, t. 16, n° 12, p. 2453–2490, nov. 2015.
- [5] S. SRA, A. W. YU, M. LI et A. SMOLA, "Adadelay : delay adaptive distributed stochastic optimization", in *Proc. Int. Conf. Artificial Intelligence and Statistics (AISTATS)*, Cadiz, Spain, 2016, p. 957–965.
- [6] M. LI, D. G. ANDERSEN, A. SMOLA et K. YUY, "Communication efficient distributed machine learning with the parameter server", in Adv. in Neural Information Processing Systems, 2014, p. 91–27.
- [7] D. DAVIS, "The asynchronous PALM algorithm for nonsmooth nonconvex problems", , avr. 2016, submitted. adresse : https://arxiv.org/abs/1604.00526.

p. 3118-3130, juin 2016.

- [9] F. FACCHINEI, G. SCUTARI et S. SAGRATELLA, "Parallel selective algorithms for nonconvex big data optimization", *IEEE Trans. Signal Process.*, t. 63, n° 7, p. 1874–1889, avr. 2015.
- [10] Z. PENG, Y. XU, M. YAN et W. YIN, "On the convergence of asynchronous parallel iteration with arbitrary delays", , déc. 2016, arXiv preprint. adresse : https://arxiv.org/abs/1612.04425.
- [11] G. SCUTARI, F. FACCHINEI, L. LAMPARIELLO et P. SONG, "Parallel and distributed methods for nonconvex optimization-part i : theory", *IEEE Trans. Signal Process.*, t. 65, n° 8, p. 1929–2944, avr. 2017.
- [12] S. A. ROBILA et D. RICART, "Distributed algorithms for unmixing hyperspectral data using nonnegative matrix factorization with sparsity constraints", in *Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS)*, Melbourne, Australia, juil. 2013, p. 2156–2159.
- [13] J. SIGURDSSON, M. O. ULFARSSON, J. R. SVEINSSON et J. M. BIOUCAS-DIAS, "Sparse distributed hyperspectral unmixing", in *Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS)*, Beijing, China, juil. 2016, p. 6994–6997.

 Introduction
 Une approche distribuée asynchrone
 Simulations sur données synthétiques
 Conclusion et perspectives

 0000000
 00000
 00000
 00000

 [14]
 ----, "Sparse distributed multitemporal hyperspectral unmixing", IEEE

Trans. Geosci. Remote Sens., 2017, accepted.

- [15] J. BOLTE, S. SABACH et M. TEBOULLE, "Proximal alternating linearized minimization for nonconvex and nonsmooth problems", *Mathematical Programming*, t. 1-2, n° 146, p. 459–494, juil. 2013.
- [16] E. CHOUZENOUX, J.-C. PESQUET et A. REPETTI, "A block coordinate variable metric forward-backward algorithm", J. Glob. Optim, t. 66, n° 3, p. 547–485, 2016.
- [17] L. CANNELLI, F. FACCHINEI, V. KUNGURTSEV et G. SCUTARI, "Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I : Model and Convergence", juil. 2016, arXiv preprint. adresse : https://arxiv.org/abs/1607.04818.
- [18] J. M. BIOUCAS-DIAS, A. PLAZA, N. DOBIGEON, M. PARENTE, Q. DU, P. GADER et J. CHANUSSOT, "Hyperspectral unmixing overview : geometrical, statistical, and sparse regression-based approaches", *IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens.*, t. 5, n° 2, p. 354–379, avr. 2012.
- [19] M. BERMAN, H. KIIVERI, R. LAGERSTROM, A. ERNST, R. DUNNE et J. F. HUNTINGTON, "ICE : a statistical approach to identifying endmembers in hyperspectral images", *IEEE Trans. Geosci. Remote Sens.*, t. 42, n° 10, p. 2085–2095, oct. 2004.

P.-A. Thouvenin, N. Dobigeon, J.-Y. Tourneret

- 0] P. GADER, A. ZARE, R. CLOSE, J. AITKEN et G. TUELL, "MUUFL gulfport hyperspectral and LiDAR airborne data set", University of Florida, Gainesville, FL, rapp. tech. REP-2013-570, oct. 2013.
- [21] P.-A. THOUVENIN, N. DOBIGEON et J.-Y. TOURNERET, "Hyperspectral unmixing with spectral variability using a perturbed linear mixing model", *IEEE Trans. Signal Process.*, t. 64, n° 2, p. 525–538, jan. 2016.
- [22] J. M. NASCIMENTO et J. M. BIOUCAS-DIAS, "Vertex component analysis : a fast algorithm to unmix hyperspectral data", *IEEE Trans. Geosci. Remote Sens.*, t. 43, n° 4, p. 898–910, avr. 2005.
- [23] D. C. HEINZ et C. -I CHANG, "Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery", *IEEE Trans. Geosci. Remote Sens.*, t. 29, n° 3, p. 529–545, mar. 2001.
- [24] J. BEZANSON, A. EDELMAN, S. KARPINSKI et V. B. SHAH, "Julia : a fresh approach to numerical computing", SIAM Review, t. 59, n° 1, p. 65–98, 2017. DOI : 10.1137/141000671.
- [25] P. BIANCHI, W. HACHEM et F. IUTZELER, "A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization", *IEEE Trans. Autom. Control*, t. 61, n° 10, p. 2947, oct. 2016.

troduction 00000000	Une approche distribuée asynchrone 0000000		Conclusion et perspectives	
[26]	H. H. BAUSCHKE, J. BOLTE et M	A. TEBOULLE, "A descent ler	nma	
	beyond Lipschitz gradient continuity : first-order methods revisited and			
	applications", Mathematics of C	<i>perations Research</i> , t. 2, n° 2) -,	
	p. 330–348, 2016.			
F = - 1				

[27] J. BOLTE, S. SABACH, M. TEBOULLE et Y. VAISBOURD, "First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems", , 2017, arXiv preprint. adresse : https://arxiv.org/abs/1706.06461v1.