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A brief introduction to hyperspectral unmixing

◮ Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20 m × 20 m);
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Hyperspectral cube

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 1 / 42



Introduction PLMM Online unmixing Distributed unmixing Conclusion and perspectives

A brief introduction to hyperspectral unmixing

◮ Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20 m × 20 m);

◮ Observations: mixture of several spectra corresponding to distinct
materials (endmembers);

Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
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A brief introduction to hyperspectral unmixing

◮ Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20 m × 20 m);

◮ Observations: mixture of several spectra corresponding to distinct
materials (endmembers);

◮ Endmembers present in unknown proportions in each pixel (abundance,
quantitative spatial mapping).

Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
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Linear mixture model

Linear mixture model

Traditionally, observations are represented by a linear combination of the
unknown endmembers [Bio+12]

∀n ∈ {1, . . .N}, yn =
R∑

r=1

arnmr + bn (1)

Y = MA + B (2)

Constraints (physical interpretability)

A � 0R,N , AT1R = 1N , M � 0L,R (3)

◮ Several models are available in the literature to capture more complex
interations between light and matter [Hal+11; Dob+14; HPG14; ADT14]
(e.g. multiple reflections).

◮ A given material is assumed to be fully characterized by a single signature.
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Endmember variability

◮ Endmembers possibly affected by local environmental factors, varying
acquisition conditions: spectral variability;

◮ Spatial variability: significant source of errors when estimating the
abundance coefficients;

◮ Error propagation within unsupervised unmixing procedures
 need for appropriate models.

(a) Endmember variability (taken from
[Gad+13]) (b) Spatial variability

Figure 2: Endmember spatial variability: an illustration.
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Temporal endmember variability

◮ Variability: a prominent issue when considering multi-temporal
hyperspectral (MTHS) images

⊲ varying acquisition conditions;
⊲ natural evolution of the scene (e.g. water, vegetation).

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 3: An example of a sequence of hyperspectral images, acquired at different time
instants.
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Variability accounting methods

Essentially two modeling paradigms
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Variability accounting methods

Essentially two modeling paradigms

◮ Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]

⊲ unmixing relies on spectral libraries, either extracted from the data or
a priori available.
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Variability accounting methods

Essentially two modeling paradigms

◮ Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]

⊲ unmixing relies on spectral libraries, either extracted from the data or
a priori available.

◮ Normal compositional model (NCM) [Ech+10; HDT15], Beta
compositional model (BCM) [Du+14]

⊲ endmembers modeled as realizations of random vectors.

Figure 4: Different representations of endmember variability within the simplex
enclosing the data (illustration taken from [HDT15]).
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Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
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Model

Perturbed LMM (PLMM) [Thouvenin et al., IEEE TSP 2016]

Observations are represented as a linear combination of possibly perturbed
endmembers

∀n ∈ {1, . . . ,N}, yn =

R∑

r=1

ar,n (mr + dmr,n) + bn (4)

Y = MA +
[
dM1a1 . . . dMNaN

]
︸ ︷︷ ︸

∆

+B (5)

⊲ In practice, problem tractable for a limited number of pixels per image.

Constraints

A � 0R,N , AT1R = 1N , M � 0L,R

M + dMn � 0L,R , ‖dMn‖F ≤ ν, ∀n ∈ {1, . . . ,N}
(6)

⊲ This model can be used to formulate a constrained optimization problem.
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Problem formulation

Optimization problem

(M∗
, dM∗

,A∗) ∈ arg min
M,dM,A

{
F (M, dM,A) s.t. (6)

}
(7)

F (M, dM,A) =
1

2
‖Y −MA−∆‖2F

︸ ︷︷ ︸
data fitting term

+αΦ(A) + βΨ(M) + γΥ(dM)︸ ︷︷ ︸
penalizations

Choice of the penalization terms:

◮ Φ: promotes spatially smooth abundances;

◮ Ψ: restrains the volume occupied by the R − 1 simplex enclosing the data;

◮ Υ: limits the energy of the captured variability.

Alternating minimization adopted: ADMM steps within a block coordinate
descent (BCD), PALM (Proximal alternating linearized minimization [BST13]).
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Penalization terms

Abundance penalization

Promote spatially smooth variations [CRH14]

Φ(A) =
1

2
‖AH‖2F (8)

where H ∈ R
N×4N computes the difference between the abundances of a pixel

and those of its neighbors.

Endmember penalization

Approximate the volume occupied by the (R − 1)-simplex enclosing the
data [Ber+04]:

Ψ(M) =
1

2

∑

i 6=j

‖mi −mj‖
2
2. (9)
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Estimation algorithm (I)

Two estimation algorithms considered: BCD/ADMM and PALM algorithms.

◮ BCD/ADMM unmixing algorithm [Thouvenin et al., IEEE TSP 2016]

⊲ no convergence proof (approximate BCD).

Algorithm 1: PLMM-unmixing: a BCD/ADMM algorithm. Each sub-problem
resulting from the decomposition of the optimization steps is solved by ADMM.

Data: Y, A0, M0, dM0

begin
k ← 0;
while stopping criterion not satisfied do

(a) Ak+1 = arg min
A

F
(
Mk , dMk ,A

)
;

(b) Mk+1 = arg min
M

F
(
M, dMk ,Ak+1

)
;

(c) dMk+1 = arg min
dM

F
(
Mk+1, dM,Ak+1

)
;

k ← k + 1;

Result: Ak+1, Mk+1, dMk+1
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Estimation algorithm (II)

◮ PALM algorithm [BST13; CPR16]

⊲ sequence of iterates proved to converge to a critical point of the
objective function (based on the Kurdyka- Lojasiewicz property).

Algorithm 2: PALM algorithm to estimate the parameters of the PLMM.

Data: Y, A0, M0, dM0

begin
k ← 0;
while stopping criterion not satisfied do

// Abundance update
for n = 1 to N do

(a) ak+1
n = proxιSR

(
akn −

1

ηkn
∇an f

(
akn ,M

k , dMk
n

))
;

// Endmember update

(b) Mk+1 = proxι
{·�Ck}

(
Mk − 1

µk
∇MF

(
Ak+1,Mk , dMk

))
, Ck = max

{
0,maxn −dM

k
n

}
;

// Variability update
for n = 1 to N do

(c) dMk+1
n = proxι{‖·‖F≤ν}

+ι
{·�−Mk+1}

(
dMk

n −
1

νkn
∇dMn f

(
ak+1
n ,Mk+1, dMk

n

))
;

k ← k + 1;

Result: Ak , Mk , dMk
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Experiments on real data (I)

Moffett scene:

◮ 50 × 50 image acquired over Moffett Field (CA) in 1997;

◮ scene partly composed of a lake and a coastal area;

◮ 189 out of the 224 available spectral bands are exploited (water absorption
bands removal)

◮ previous studies available for this scene [Dob+09; Hal+11; EDT11]
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Experiments on real data (II)
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Figure 5: Abundance maps estimated for the Moffett scene.
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Experiments on real data (III)

◮ Variability energy concentrated on interface areas (possible nonlinearities).
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Figure 6: Spatial distribution of the variability w.r.t. each endmember estimated for
the Moffett dataset. The maps are presented in terms of the variability energy for

visualization purpose (‖dmr,n‖2/
√
L for the rth endmember in the nth pixel).
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Experiments on real data (IV)

◮ Variability peaks: result from spectral bands with a poor SNR.
◮ Notable estimation improvement for the water signature.

(a) Water (ELMM) (b) Soil (ELMM) (c) Veg. (ELMM)

(d) Water (PALM) (e) Soil (PALM) (f) Veg. (PALM)

Figure 7: Endmembers estimated for the Moffett scene (red lines), VCA in black, and
variability in cyan.
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Context and motivations

◮ Data: multi-temporal hyperspectral (MTHS) images

⊲ similar materials expected to be observed over time;
⊲ exploit temporal information redundancy (possibly smooth variations

of the parameters);
⊲ significant size of the data may preclude the use of batch procedures.

◮ Varying acquisition conditions may affect the shape and the amplitude of
the endmembers.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 8: Sequence of hyperspectral images analyzed in this section.
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Model

As a first approximation, endmember variability is assumed to be uniform on
each image

 significant reduction in the number of unknown parameters.

PLMM variant [Thouvenin et al., IEEE TIP 2016]

Yt = (M + dMt)At + Bt , ∀t = 1, . . . ,T (10)

Constraints

M � 0L,R , At � 0R,N , AT
t 1R = 1N

∥∥∥∥∥
1

T

T∑

t=1

dMt

∥∥∥∥∥
F

≤ κ, ‖dMt‖F ≤ ν.
(11)
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Problem formulation

Proposed approach: online unmixing – the available data are sequentially
processed to estimate the mixture parameters (based on [Mai+10])

 problem formulated as a two stage stochastic program

Problem statement

min
M∈[0,1]L×R

g(M) = EY,A,dM

[
f
(
Y,M,A, dM

)]
s.t. (11)

f (Y,M,A, dM) =
1

2
‖Y − (M + dM)A‖2F + αΦ(A) + βΨ(M) + γΥ(dM).

where Φ, and Υ promote smooth temporal variations of the associated
parameters.

Stochastic approximation

gt(M) =
1

2t

t∑

i=1

‖Yi − (M + dMi )Ai‖
2
F + βΨ(M)

=
1

t

[
1

2
Tr(MTMCt) + Tr(MTDt)

]
+ βΨ(M) + c.
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Two stage stochastic program

Two stage stochastic program (see, e.g., [RX11])

◮ acquire an HS image Yt ;

◮ estimate the corresponding abundance and variability terms, solution to a
first optimization problem (first stage problem)

(At , dMt) ∈ arg min
(A,dM)∈AR×Dt

f (Yt ,M
(t−1)

,A, dM); (12)

◮ update the endmember matrix using the newly extracted information, as a
solution to the second stage problem

M(t) = arg min
M∈M

ĝt(M). (13)
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Proposed algorithm
[Thouvenin et al., IEEE TIP 2016]

Remark: a convergence result can be obtained (under milder assumptions than
those considered in the manuscript) by interpreting the proposed algorithm as
an instance of the BC-VMFB algorithm [CPR16].

Algorithm 3: Online unmixing algorithm.

Data: M(0), A0, dM0, α > 0, β > 0, γ > 0, ξ ∈]0, 1]
begin

C0 ← 0R,R ;
D0 ← 0L,R ;
E0 ← 0L,R ;
for t = 1 to T do

a Random selection of an image Yt (random permutation of the image sequence);
// Abundance and variability estimation by PALM [BST13]

b (At , dMt) ∈ arg min
(A,dM)∈AR×Dt

f (Yt ,M
(t−1),A, dM);

Ct ← ξCt−1 + AtA
T
t ;

Dt ← ξDt−1 + (dMtAt − Yt)A
T
t ;

Et ← ξEt−1 + dMt ;

// Endmember update [Mai+10, Algo. 2]

c M(t) ← arg min
M∈M

ĝt(M);

Result: M(T ), {(At , dMt)}t=1,··· ,T
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Experiments on real data (I)

Data:

◮ sequence of AVIRIS HS images, acquired of the Mud Lake area (California,
USA) between 2014 and 2015;

◮ 173 exploited bands, outlier corrupted pixels removed from Fig. 9d prior to
the unmixing procedure.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 9: Mud Lake dataset.

Remark:

◮ Sensitivity to outliers  robust unmixing of MTHS images (details in the
manuscript).
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Experiments on real data (II)
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Figure 10: Water abundance maps.
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Figure 11: Vegetation abundance maps.
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Experiments on real data (III)

(a) Water (VCA) (b) Soil (VCA) (c) Veg. (VCA)

(d) Water (NMF) (e) Soil (NMF) (f) Veg. (NMF)

(g) Water (OU) (h) Soil (OU) (i) Veg. (OU)

Figure 12: Estimated endmembers (red lines) and their variants affected by variability (blue lines).
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Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm
Motivations
Simulations on synthetic data

4. Conclusion and perspectives
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Motivations

◮ Images composed of a possibly large number of pixels  use of distributed
unmixing procedures
⊲ master-slave configuration;

Figure 13: Single HS image divided into sub-images assigned to different nodes.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 28 / 42



Introduction PLMM Online unmixing Distributed unmixing Conclusion and perspectives

Motivations

◮ Images composed of a possibly large number of pixels  use of distributed
unmixing procedures
⊲ master-slave configuration;

Figure 13: Sequence of images, each assigned to a computing node.
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Motivations

◮ Images composed of a possibly large number of pixels  use of distributed
unmixing procedures
⊲ master-slave configuration;

◮ Asynchronicity: account for possible discrepancies in the performance of
the computational nodes, reduce idle time periods (compared to
synchronous algorithms);

1 Iteration k0

Master
Worker 1
Worker 2
Worker 3

(a) Synchronous system.

1 2 3 Iteration k0

Master
Worker 1
Worker 2
Worker 3

(b) Asynchronous system.

Figure 13: Illustration of a synchronous and an asynchronous distributed mechanism
(idle time in white, transmission delay in light gray, computation delay in gray).
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Motivations

◮ Images composed of a possibly large number of pixels  use of distributed
unmixing procedures
⊲ master-slave configuration;

◮ Asynchronicity: account for possible discrepancies in the performance of
the computational nodes, reduce idle time periods (compared to
synchronous algorithms);

1 Iteration k0

Master
Worker 1
Worker 2
Worker 3

(a) Synchronous system.

1 2 3 Iteration k0

Master
Worker 1
Worker 2
Worker 3

(b) Asynchronous system.

Figure 13: Illustration of a synchronous and an asynchronous distributed mechanism
(idle time in white, transmission delay in light gray, computation delay in gray).

◮ Significant number of asynchronous algos. recently proposed [CE16;
Pen+16a; BJ13; PR15; Sra+16; Li+14; Dav16; Cha+16; FSS15;
Pen+16b; Scu+17]
⊲ only (a few) synchronous distributed unmixing procedures in the

literature [RR13; Sig+16; Sig+17].
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Objective

Develop an asynchronous unmixing procedure inspired from the PALM
algorithm [BST13; CPR16]

◮ the standard PALM algorithm easily leads to a synchronous distributed
unmixing algorithm

 reference to assess the interest of the asynchronicity;

◮ convergence guarantees in the synchronous [BST13; CPR16], and
asynchronous case [Can+16].
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Problem formulation

Unmixing problem

(A∗
,M∗) ∈ arg min

A,M

{
F (A,M) + αΦ(A) + ιAR,N (A)

+ βΨ(M) + ι{·�0}(M)
}

with
(14)

F (A,M) =
I∑

i=1

fi
(
M,Ai

)
=

1

2

I∑

i=1

‖Yi −MAi‖
2
F

AR,J =
{
A ∈ R

R×J : an ∈ SR , ∀n ∈ {1, · · · , J}
}

SR = {x ∈ R
R : xr ≥ 0 and xT1R = 1}

◮ ιS : indicator function of the set S (ιS = 0 if x ∈ S, +∞ otherwise)

◮ Φ et Ψ : appropriate convex penalties

⊲ in general, Φ is separable to allow a distributed estimation (14);
⊲ in the following : Φ = 0, Ψ is the mutual distance between the

endmembers [Ber+04].
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Asynchronous distributed unmixing algorithm (I)

◮ Each worker updates a subset of the abundance coefficients;

◮ The master node aggregates the information transmitted by the workers to
update the endmembers.

Master

Worker 1 Worker 2 Worker 3

f1, φ1,A1 f2, φ2,A2 f3, φ3,A3

F ,Φ,Ψ,M

Figure 14: Distribution of the estimation tasks between the computing nodes (for
I = 3 data blocks).
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Asynchronous distributed unmixing algorithm (II)

Algorithm 4: Algorithm of the ith worker.

Data: M, Ãi .
begin

Wait for updated endmembers from the master node, (M, Ãi );

Âi ∈ proxιAR,J

(
Ãi −

1

cAi

∇Ai
fi
(
Ãi ,M

))
;

Broadcast Âi to the master node;

Result: Âi .
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Asynchronous distributed unmixing algorithm (III)

Algorithm 5: Algorithm of the master node.

Data: A0, M0, µ ∈]0, 1[ (µ = 10−6).
γ0 ← 1, k ← 0 ;
while stopping criterion not satisfied, do

Wait for Ãik from one of the workers ;
// Abundance update

Ak+1
i =

{
Ak

i + γk
(
Ãk

i − Ak
i

)
, i = ik

Ak
i , i 6= ik

;

// Endmember update

M̃k = proxι{·�0}

(
Mk − 1

νk∇M

[
F (Ak+1,Mk) + βΨ(Mk)

])
;

Mk+1 = Mk + γk
(
M̃k −Mk

)
;

// Relaxation coefficient update

γk+1 = γk(1− µγk);

// Broadcast new estimate to the worker ik

Broadcast (Mk+1,Ak+1
ik

) to the worker ik ;

k ← k + 1;

Result: Ak , Mk .

Similar algorithm in presence of variability
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Distributed unmixing in presence of variability

PLMM

yn =

R∑

r=1

(mr + dmr,n)ar,n + bn (15)

Additional constraints:

‖dMn‖
2
F
≤ ν, where dMn = [dm1,n, . . . , dmR,n] (16)

Remarks:

◮ data distribution similar to the previous case;

◮ parallel estimation of the abundance coefficients and the variability terms;

◮ non-negativity constraints on the perturbed endmembers removed
(limitation resulting from the asynchronicity).
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Simulations on synthetic data (LMM) (I)

◮ Data : 3 HS images, composed of R = 9 endmembers, L = 413 spectral
bands;

◮ Images: 100× 100 pixels,corrupted by an additive Gaussian noise such
that SNR = 30 dB;

◮ Performance evaluation for I = 3 processus;

◮ Initialization: VCA [NB05] / FCLS [HC01];

◮ Comparison of the algo. with its synchronous counterpart, both
implemented in Julia [Bez+17].

Table 1: Simulation results on synthetic data.

Sync. Async.

aSAM(M) (➦) 9.74e-01 1.04e+00
GMSE(A) 3.48e-04 5.25e-04
RE 1.05e-04 1.07e-04
aSAM(Y) (➦) 2.23e-02 2.24e-02
time (s) 1.39e+03 3.33e+02
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Simulations on synthetic data (LMM) (II)
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Figure 15: Objective function versus computation time for the synchronous and
asynchronous unmixing algorithms (until convergence) [LMM].

Remarks:

◮ asynchrony promising in terms of computation time (to reach
convergence);

◮ slight performance decrease.
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Simulations on synthetic data (PLMM) (I)

◮ Data: 3 HS images, composed of R = 3 endmembers, L = 413 spectral
bands;

◮ Images: 100× 100 pixels, corrupted by an additive white Gaussian noise
such that SNR = 30 dB.

Figure 16: Example of the endmembers (in red) and the corrupted endmembers (in
blue) used in the experiments.
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Simulations on synthetic data (PLMM) (II)
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Figure 17: Objective function versus computation time for the synchronous and
asynchronous unmixing algorithms (until convergence) [PLMM].

Remarks:

◮ the results between the synchronous and asynchronous algorithm can differ
significantly;

◮ the asynchronous procedure can converge to a less interesting stationary
point than its synchronous counterpart (main limitation).
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Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
Conclusion
Perspectives

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 39 / 42



Introduction PLMM Online unmixing Distributed unmixing Conclusion and perspectives

Conclusion

Variability modeling:

◮ Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM

◮ represents variability within a single HS image;
◮ spatially/spectrally characterizes the observed variability;
◮ deterministic counterpart of the NCM [Ech+10].
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Conclusion

Variability modeling:

◮ Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM

◮ represents variability within a single HS image;
◮ spatially/spectrally characterizes the observed variability;
◮ deterministic counterpart of the NCM [Ech+10].

◮ Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)

◮ represents abrupt and smooth spectral variations occurring over time
(information redundancy);

◮ model developed within a Bayesian framework.
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Conclusion

Variability modeling:

◮ Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM

◮ represents variability within a single HS image;
◮ spatially/spectrally characterizes the observed variability;
◮ deterministic counterpart of the NCM [Ech+10].

◮ Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)

◮ represents abrupt and smooth spectral variations occurring over time
(information redundancy);

◮ model developed within a Bayesian framework.

Computational considerations:

◮ Study of an online unmixing algorithm to analyze multi-temporal HS
images

◮ exploits information redundancy between consecutive images;
◮ compromise between computational cost and accuracy.
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Conclusion

Variability modeling:

◮ Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM

◮ represents variability within a single HS image;
◮ spatially/spectrally characterizes the observed variability;
◮ deterministic counterpart of the NCM [Ech+10].

◮ Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)

◮ represents abrupt and smooth spectral variations occurring over time
(information redundancy);

◮ model developed within a Bayesian framework.

Computational considerations:

◮ Study of an online unmixing algorithm to analyze multi-temporal HS
images

◮ exploits information redundancy between consecutive images;
◮ compromise between computational cost and accuracy.

◮ Preliminary study of an asynchronous distributed unmixing algorithm
◮ interest and limitations when compared to a synchronous version of

the same algorithm.
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Perspectives

◮ Variability modeling

⊲ physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);

⊲ promote different structures for the variability term;
⊲ estimation of the endmember number in presence of variability.
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Perspectives

◮ Variability modeling

⊲ physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);

⊲ promote different structures for the variability term;
⊲ estimation of the endmember number in presence of variability.

◮ Computational considerations

⊲ automatic hyperparameter selection [Ste81; Del+14];
⊲ incorporate variable metrics into the proximal algorithms considered

[CPR16; FGP15];
⊲ relaxation to the Ising field considered in the robust unmixing

 leverage online estimation techniques.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 41 / 42



Introduction PLMM Online unmixing Distributed unmixing Conclusion and perspectives

Perspectives

◮ Variability modeling

⊲ physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);

⊲ promote different structures for the variability term;
⊲ estimation of the endmember number in presence of variability.

◮ Computational considerations

⊲ automatic hyperparameter selection [Ste81; Del+14];
⊲ incorporate variable metrics into the proximal algorithms considered

[CPR16; FGP15];
⊲ relaxation to the Ising field considered in the robust unmixing

 leverage online estimation techniques.

◮ Application oriented developments

⊲ application to different context: medical imagery [Cav+17],
astronomy [Rap+14; CB17];

⊲ performance assessment for change detection, with possibly different
imaging modalities [Pre+16; YZP17; Fer+17], data fusion [Wei+16].
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Thank you for your attention.
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Link between the PLMM and models from the literature Back to main slide

The PLMM can be compared with two models from the literature:

◮ the Generalized NCM (GNCM) [HDT15]

⊲ the two models are equivalent when considering mr,n = mr + dmr,n;
⊲ distinction in terms of the adopted estimation approach

yn =
R∑

r=1

ar,nmr,n + bn,

mr,n ∼ N (mr , diag(σ2
r )), bn ∼ N (0L, ψ

2
nIL).

(17)
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The PLMM can be compared with two models from the literature:

◮ the Generalized NCM (GNCM) [HDT15]

⊲ the two models are equivalent when considering mr,n = mr + dmr,n;
⊲ distinction in terms of the adopted estimation approach

yn =
R∑

r=1

ar,nmr,n + bn,

mr,n ∼ N (mr , diag(σ2
r )), bn ∼ N (0L, ψ

2
nIL).

(17)

◮ the Extended LMM (ELMM) [Dru+16] (explicit variability model)

⊲ variability represented in terms of spatially varying scaling factors ψn;
⊲ the scaling indeterminacy introduced ψn is partly addressed in the

estimation algorithm proposed in [Dru+16]

yn = ψn

R∑

r=1

ar,nmr + bn. (18)
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Synthetic variability generation Back to main slide

Variability generation:

◮ term-wise product of reference endmembers with randomly generated
affine functions

⊲ spatially varying signatures.

Figure 18: Reference endmembers (red lines) and 20 corresponding instances under
spectral variability (cyan lines) involved in the synthetic data experiments.
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◮ Data: 128 × 64 HS images, composed of R ∈ {3, 6} endmembers, with
L = 413 bands;

◮ Additive white Gaussian noise: SNR = 30 dB;

◮ Variability generation: term-wise product of reference endmembers with
randomly generated affine functions

⊲ spatially varying signatures.

Figure 19: Reference endmembers (red lines) and 20 corresponding instances under
spectral variability (cyan lines) involved in the synthetic data experiments.
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Experiments on synthetic data [PLMM] (II) Back to main slide

Table 2: Simulation results on synthetic data in absence of pure pixels
(GMSE(A)×10−2, GMSE(dM)×10−4, RE ×10−4) [(α, β) = (2.1× 10−1, 7.7× 10−6)
for R = 3, (α, β) = (7.1× 10−1, 4.3× 10−6) for R = 6].

aSAM(M) (➦) GMSE(A) GMSE(dM) RE time (s)

R
=

3

VCA/FCLS 5.06 2.07 / 2.66 1
SISAL/FCLS 4.43 2.16 / 2.56 2
FDNS 5.06 2.06 / 2.66 3
AEB 5.11 2.11 / 2.66 33
ELMM 5.05 1.78 6.86 4.34 329

ssmdBCD/ADMM (γ = 10−1) 4.56 1.49 6.21 0.08 285

ssmdPALM (ν = 5× 10−2) 4.51 1.54 5.24 0.60 314

R
=

6

VCA/FCLS 6.55 2.52 / 2.82 4
SISAL/FCLS 6.04 1.63 / 2.02 5
FDNS 6.55 2.53 / 2.82 7
AEB 6.00 1.78 / 1.85 208
ELMM 6.54 1.98 4.13 0.60 555
ssmdBCD/ADMM (γ = 1) 6.19 2.19 2.89 0.81 618

ssmdPALM (ν = 2× 10−1) 6.05 2.21 2.73 1.82 449
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Experiments on synthetic data [PLMM] (III) Back to main slide
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Figure 20: Estimated abundance maps
obtained from the synthetic dataset in
absence of pure pixels composed of
R = 3 endmembers.
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Figure 21: Spatial distribution of the
estimated variability w.r.t. each
endmember, presented in terms of its

energy (‖dmr,n‖2/
√
L for the rth

endmember in the nth pixel).
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Experiments on synthetic data [OU] (I) Back to main slide

Data:

◮ sequences of 10 HS images of size 98 × 102, composed of 173 spectral
bands;

◮ endmembers affected by smoothly varying endmember variability,
smoothly evolving abundance maps;

◮ data corrupted by an additive white Gaussian, SNR = 30 dB.

Table 3: Simulation results on synthetic data (GMSE(A)×10−2, GMSE(dM)×10−4,
RE ×10−4).

aSAM(M) (➦) GMSE(A) GMSE(dM) RE aSAM(Y) (➦) time (s)

R
=

3

VCA 16.8 4.20 / 0.37 2.81 1.4
SISAL 16.5 3.83 / 0.35 2.75 3
ℓ1/2 NMF 19.4 7.39 / 0.77 3.1 189
PLMM 17.2 4.22 0.65 0.12 1.53 380
OU 4.70 0.27 2.07 0.34 2.75 156

PALM 5.02 9.67×10−3 1.81 0.34 2.75 37
DSU [HCJ16] 2.87 0.35 1.74 3.57 2.76 24
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Experiments on synthetic data [OU] (II) Back to main slide
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Figure 22: Abundance maps of the first endmember used in the synthetic mixtures.
The top line indicates the theoretical maximum abundance value and the true number
of pixels whose abundance is greater than 0.95 for each time instant.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 8 / 27



Experiments on synthetic data [OU] (III) Back to main slide

(a) TRUE (b) TRUE (c) TRUE

(d) VCA (e) VCA (f) VCA

(g) OU (h) OU (i) OU

Figure 23: Estimated endmembers from the synthetic hyperspectral time series
(extracted endmembers are represented in red, variability in blue dotted lines).
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Endmember number: a geometrical illustration Back to main slide

Figure 24: Data projected on the R − 1 simplex containing the data (linear model)
(image taken from [Dob+09]).
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Context and motivations Back to main slide

Observations:

◮ some of the observed materials present moderate variations across time
(man-made constructions, ...);

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same
area at different time instants.
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Context and motivations Back to main slide

Observations:

◮ some of the observed materials present moderate variations across time
(man-made constructions, ...);

◮ signatures corresponding to materials present in the different images

⊲ realizations of reference endmembers  variability;

◮ abrupt variations may occur (e.g., when water or vegetation are present in
the observed scene)

⊲ new material or a sensor default  abrupt spectral changes  outlier
w.r.t. the commonly shared materials.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same
area at different time instants.
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Proposed approach Back to main slide

Proposed approach:

◮ unmix a reference HS image to obtain an initial estimate for the
endmembers;

◮ use / refine this result when unmixing the remaining images.

Model:

◮ represent smooth endmember variations as temporal variability;

◮ interpret abrupt spectral variations in terms of outliers.
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Model Back to main slide

Model and constraints

Yt = (M + dMt)At + Xt + Bt (19)

At � 0R,N , A
T
t 1R = 1N , ∀t ∈ {1, . . . ,T}

M � 0L,R , M + dMt � 0L,R , Xt � 0L,N

(20)

Likelihood function

p(Y
¯
| Θ) ∝

T∏

t=1

(σ2
t )−NL/2 exp

(
−

1

2σ2
t

‖Yt − (M + dMt)At − Xt‖
2
F

)

where Θ = {M, dM
¯
,A

¯
,X

¯
,σ2}

Objective: infer Θ from Y
¯

using p(Θ | Y
¯

)

 need for priors on the different parameters/hyperparameters involved in
the model.

Parameter estimation: MCMC algorithm (Gibbs sampler) used to build
estimators of the parameters of interest.
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Hierarchical Bayesian model
[Thouvenin et al., submitted, 2017]

Y
¯

M

ξ

dM
¯

νΨ2

aΨ bΨ

σ2

aσ bσ

A
¯

ε2

X
¯

Z s2

β as bs

Figure 26: Description of the proposed Bayesian model using a directed acyclic graph
(fixed parameters appear in boxes).
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Hierachical Bayesian model: priors (I) Back to main slide

Abundance prior

◮ promotes smooth abundance variations (except when the corresponding
pixel contains outliers)

◮ abundance sum-to-one constraint relaxed (aTn,t1R ≤ 1) when outliers are
present in the pixel (n, t) (apparition of new materials)

an,1 | xn,t = 0L ∼ USR

an,t | xn,t 6= 0L ∼ US̃R
, for t = 1, . . . ,T

p
(
an,t | xn,t = 0L,A

¯\{an,t}

)
∝ exp

{
−

1

2ε2n

(
[T 1

n,t 6= ∅]
∥∥∥an,t − an,τ1

n,t

∥∥∥
2

2

)}

1SR
(an,t), for t ≥ 2

with

SR = {x ∈ R
R | ∀i , xi ≥ 0 and xT1R = 1}

S̃R = {x ∈ R
R | ∀i , xi ≥ 0 and xT1R ≤ 1}

T
1
n,t = {τ < t | xn,τ = 0} , τ

1
n,t = max

τ∈T 1
n,t

τ.
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Hierachical Bayesian model: priors (II) Back to main slide

Outlier prior

◮ promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];

◮ takes advantage of possible spatial correlations between these outliers by
modeling zt ∈ R

N as Ising-Markov random fields (correlations likely to
occur when new materials appear)

p(xn,t | zn,t , s
2
t ) = (1− zn,t)δ(xn,t) + zn,t NR

L
+

(0L, s
2
t ).
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Outlier prior

◮ promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];

◮ takes advantage of possible spatial correlations between these outliers by
modeling zt ∈ R

N as Ising-Markov random fields (correlations likely to
occur when new materials appear)

p(xn,t | zn,t , s
2
t ) = (1− zn,t)δ(xn,t) + zn,t NR

L
+

(0L, s
2
t ).

Variability prior

◮ promotes smooth endmember variations from an image to another
[Hal+15; HCJ16]

dmℓ,r,1 | mℓ,r ∼ NIℓ,r (0, ν), Iℓ,r = [−mℓ,r ,+∞)

dmℓ,r,t |mℓ,r , dmℓ,r,(t−1), ψ
2
ℓ,r ∼ NIℓ,r

(
dmℓ,r,(t−1), ψ

2
ℓ,r

)

◮ ν penalizes the variability energy in the first image;

◮ ψ2
ℓ,r controls the temporal evolution of the variability.
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Priors assigned to the remaining parameters Back to main slide

Endmember prior

◮ endmembers can be a priori considered to live in a subspace of dimension
K ≪ L (PCA or rPCA [Can+09]);

◮ considering the decomposition used in [Dob+09] leads to

mr = (IL −UUT)ȳ + Uer , UTU = IK

where U is a basis of the subspace and ȳ is the sample mean of Y
¯

;

◮ projected endmembers er are assigned a truncated multivariate Gaussian
prior to ensure the non-negativity of mr

er ∼ NEr (0K , ξIK ), for r = 1, . . . ,R. (21)

Hyperparameter priors

◮ conjugate inverse-gamma priors assigned to the noise (σ2), the variability
(Ψ2) and the outlier (s2) variances, i.e.,

σ
2
t ∼ IG(aσ, bσ), ψ2

ℓ,r ∼ IG(aΨ, bΨ), s2t ∼ IG(as, bs) (22)

where aσ = bσ = aΨ = bΨ = as = bs = 10−3.
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Parameter estimation Back to main slide

Algorithm 6: Proposed Gibbs sampler.

Input: Nbi, NMC, Θ
(0), β, ξ, aΨ, bΨ, as, bs, aσ , bσ , ν, ε

2.
for q = 1 to NMC do

for (n, t) = (1, 1) to (N,T ) do

Draw a
(q)
n,t ∼ p

(
an,t | yn,t ,Θ\{an,t}

)
;

for r = 1 to R do

Draw e(q)r ∼ p
(
er | Y

¯
,Θ\{er}

)
;

for t = 1 to T do

Draw dM
(q)
t ∼ p

(
dMt | Yt ,Θ\{dMt}

)
;

for (n, t) = (1, 1) to (N,T ) do

Draw z
(q)
n,t ∼ P

[
zn,t | yn,t ,Θ\{zn,t}

]
;

Draw x
(q)
n,t ∼ p

(
xn,t | Θ\{xn,t}

)
;

for t = 1 to T do

Draw s
2(q)
t ∼ p

(
s2t | Θ\{s2t }

)
;

for t = 1 to T do

Draw σ
2(q)
t ∼ p

(
σ2
t | Θ\{σ2t }

)
;

for (ℓ, r) = (1, 1) to (L,R) do

Draw ψ
2(q)
ℓ,r ∼ p

(
ψ2
ℓ,r | Θ\{ψ2

ℓ,r
}

)
;

for t = 1 to T do
Draw βt (Metropolis-Hastings step) ;

Result:
{
Θ(q)

}NMC
q=1
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Experiments on synthetic data (I) Back to main slide

Data generation:
◮ MTHS image composed of 10 images of size 50 × 50, L = 413 bands,

affected by smooth time-varying variability and additive white Gaussian
noise;

◮ mimics the emergence of a previously undetected material in a few pixels
within specific images  outliers.

Algorithmic setting (synthetic data):

◮ X
(0)
t = 0L,N , dM

(0)
t = 0L,R , z

(0)
n,t = 0, σ

2(0)
t = 10−4, ψ

2(0)
ℓ,r = 10−3,

s
2(0)
t = 5× 10−3, β

(0)
t = 1.7;

◮ numerical constants: εn = 10−3, ν = 10−3;
◮ NMC = 400 M-C iterations, with Nbi = 350 burn-in iterations.

Table 4: Simulation results on synthetic multi-temporal data (GMSE(A)×10−2,
GMSE(dM)×10−4, RE ×10−4).

aSAM(M) (➦) GMSE(A) GMSE(dM) RE time (s)

R
=

3
(♯
1
) VCA/FCLS 6.07 2.32 / 3.91 1

SISAL/FCLS 5.07 1.71 / 2.28 2
RLMM 5.13 2.04 / 0.31 463
DSU 5.18 0.53 11.5 2.21 8
OU 1.90 0.42 3.22 2.61 98
Proposed 2.03 0.15 1.85 2.00 2530
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Experiments on synthetic data (II) Back to main slide
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Figure 27: Abundance maps estimated for the third endmember for t = 1 to 6. The
areas corrupted by outliers are delineated in red.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 20 / 27



Experiments on synthetic data (III) Back to main slide
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Figure 28: Ground truth (first row) and estimated labels (second row) obtained with
the proposed method for t = 1 to 10, where each column corresponds to a time
instant [0 in black, 1 in white].
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Figure 29: Map of the re-scaled abundance estimation errors for the third endmember
at time t = 2 (from left to right: true abundances, estimation error of VCA/FCLS,
SISAL/FCLS, rLMM, OU and the proposed method). Except for the proposed
method, the results exhibit notable errors in pixels corrupted by outliers (area in red).
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Experiments on synthetic data (IV) Back to main slide

(a) True (b) True (c) True

(d) SISAL (e) SISAL (f) SISAL

(g) RLMM (h) RLMM (i) RLMM

Figure 30: Endmembers (red lines) and corrupted endmembers (blue dotted lines).
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Experiments on synthetic data (V) Back to main slide

(a) True (b) True (c) True

(d) OU (e) OU (f) OU

(g) MCMC (h) MCMC (i) MCMC

Figure 31: Endmembers (red lines) and corrupted endmembers (blue dotted lines).
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Experiments on real data (I) Back to main slide

Data:

◮ real sequence of 100× 100 HS images acquired by the AVIRIS sensor, Mud
Lake, California, USA;

◮ 173 exploited bands, out of the 224 available bands.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 16/10/15

Figure 32: Scenes used in the experiment, given with their respective acquisition date.
The area delineated in red in Fig. 32e highlights a region known to contain outliers.
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Experiments on real data (II) Back to main slide
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Figure 33: Soil abundance map recovered by the different methods (in row) at each
time instant (in column) [VCA/FCLS, SISAL/FCLS, RLMM, OU, MCMC].
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Experiments on real data (III) Back to main slide
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Figure 34: Outlier energy recovered by RLMM [FD15] and the proposed MCMC
method.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Figure 35: Non-linearity maps estimated by [Alt+13] applied to each image with the
SISAL-extracted endmembers.
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Experiments on real data (IV) Back to main slide

(a) VCA (b) VCA (c) VCA

(d) SISAL (e) SISAL (f) SISAL

(g) MCMC (h) MCMC (i) MCMC

Figure 36: Extracted endmembers (red lines) and perturbed endmembers (blue lines).
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