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Introduction
@00

A brief introduction to hyperspectral unmixing

> Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20m x 20 m);
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A brief introduction to hyperspectral unmixing

> Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20m x 20 m);

Hyperspectral cube
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A brief introduction to hyperspectral unmixing

> Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20m x 20 m);

» Observations: mixture of several spectra corresponding to distinct
materials (endmembers);
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Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
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Introduction
oeo

A brief introduction to hyperspectral unmixing

> Airborne/spaceborne hyperspectral (HS) images: high spectral resolution
(10 nm), comparatively lower spatial resolution (20m x 20 m);

» Observations: mixture of several spectra corresponding to distinct
materials (endmembers);

» Endmembers present in unknown proportions in each pixel (abundance,
quantitative spatial mapping).
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Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
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Linear mixture model

Linear mixture model

Traditionally, observations are represented by a linear combination of the
unknown endmembers [Bio+12]

R

Vne{l,...N}, yo=)_ am +b, (1)
=il

Y=MA+B (2)

Constraints (physical interpretability)

A-0ry, ATlg=1y, M>=0.¢ (3)

» Several models are available in the literature to capture more complex
interations between light and matter [Hal+11; Dob+14; HPG14; ADT14]
(e.g. multiple reflections).

» A given material is assumed to be fully characterized by a single signature.
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Introduction
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Endmember variability

» Endmembers possibly affected by local environmental factors, varying
acquisition conditions: spectral variability;
» Spatial variability: significant source of errors when estimating the
abundance coefficients;
> Error propagation within unsupervised unmixing procedures
~~ need for appropriate models.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Reflectance

[
400 500 600 700 800 900
Wavelength

PRI T 1 o g
(a) Endmember variability (taken from . Lo
[Gad+13]) (b) Spatial variability
Figure 2: Endmember spatial variability: an illustration.
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Temporal endmember variability

» Variability: a prominent issue when considering multi-temporal
hyperspectral (MTHS) images
> varying acquisition conditions;
> natural evolution of the scene (e.g. water, vegetation).

(a) 10/04/14  (b) 02/06/14  (c) 19/09/14  (d) 17/11/14

Figure 3: An example of a sequence of hyperspectral images, acquired at different time
instants.
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Variability accounting methods

Essentially two modeling paradigms

P-ENSEEIHT Spatial & temporal



Introduction
[e]e] le)

Variability accounting methods

Essentially two modeling paradigms
» Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]

> unmixing relies on spectral libraries, either extracted from the data or
a priori available.
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Variability accounting methods

Essentially two modeling paradigms
» Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]
> unmixing relies on spectral libraries, either extracted from the data or
a priori available.
» Normal compositional model (NCM) [Ech+10; HDT15], Beta
compositional model (BCM) [Du+14]
> endmembers modeled as realizations of random vectors.
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Figure 4: Different representations of endmember variability within the simplex
enclosing the data (illustration taken from [HDT15]).
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Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
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Overview

1. A perturbed LMM to account for spatial variability
= Model and problem formulation
= Experiments on real data
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Model

Perturbed LMM (PLMM) [Thouvenin et al., IEEE TSP 2016]

Observations are represented as a linear combination of possibly perturbed
endmembers

R
Vne{l,...,N}, yo=1> ann(m,+dm,,)+b, (4)

r=1

Y = MA + [ dM;a; ‘ .. ‘ dMyay ] +B (5)
A
> In practice, problem tractable for a limited number of pixels per image.

AxOry, ATlg=1y, M> 0. 6)
M+dM, = 0. r, [[dM,|c <v, Vne{l,...,N}

> This model can be used to formulate a constrained optimization problem.
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PLMM
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Problem formulation

Optimization problem

(M*,dM*, A*) € arg min {F(M,dM,A) st. (6)} @)
M,dM,A

F(M,dM,A) = % Y — MA — A||,2E +a®(A) + V(M) + T (dM)

data fitting term

penalizations

Choice of the penalization terms:
» ®: promotes spatially smooth abundances;

» W: restrains the volume occupied by the R — 1 simplex enclosing the data;
> T: limits the energy of the captured variability.

Alternating minimization adopted: ADMM steps within a block coordinate
descent (BCD), PALM (Proximal alternating linearized minimization [BST13]).
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PLMM
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Penalization terms

Abundance penalization

Promote spatially smooth variations [CRH14]
1
®(A) = ||AH]}z (8)

where H € RV**N computes the difference between the abundances of a pixel
and those of its neighbors.

Endmember penalization

| A

Approximate the volume occupied by the (R — 1)-simplex enclosing the
data [Ber+04]:

w(M) = 2 > i — my 2 ©)

i#)
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PLMM
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Estimation algorithm (1)

Two estimation algorithms considered: BCD/ADMM and PALM algorithms.
» BCD/ADMM unmixing algorithm [Thouvenin et al., IEEE TSP 2016]
> no convergence proof (approximate BCD).

Algorithm 1: PLMM-unmixing: a BCD/ADMM algorithm. Each sub-problem
resulting from the decomposition of the optimization steps is solved by ADMM.
Data: Y, A°, M°, dM°

begin
k + 0;
while stopping criterion not satisfied do
@ A = arg min F(M",dM“,A) :
A
®) M**+! = arg min F(M, dM*, A““) :
M
© dM“! = arg min F(Mk“, dMm, Ak“> ;
dmMm
| k «— k+1;

Result: A*F1, MK dmK+?
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PLMM
(o]e]e]e] ]

Estimation algorithm (I1)

» PALM algorithm [BST13; CPR16]

> sequence of iterates proved to converge to a critical point of the
objective function (based on the Kurdyka-tojasiewicz property).

Algorithm 2: PALM algorithm to estimate the parameters of the PLMM.

Data: Y, A%, M®, dM°

begin

k < 0;

while stopping criterion not satisfied do
// Abundance update

for n=1to N do

L all = prox, g . <a‘,§ - ivanf(a‘;, M’:dMﬁ));

// Endmember update

M* = prox, Mk — %VMF(A"“, M“,dM“) , €% = max{0, max, —dM¥ };
{=cky » "

// Variability update

for n=1to N do

dM5F! = prox

k_ 1 K+1 ppktl k).
"{H'HFSV}+L{-§—M‘<+1}(dMn vév““""f(a" M ’dM")>'

| k+— k+1;

Result: A%, M¥, dM*
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PLMM
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Experiments on real data (1)

Moffett scene:
» 50 x 50 image acquired over Moffett Field (CA) in 1997;

> scene partly composed of a lake and a coastal area;

\4

189 out of the 224 available spectral bands are exploited (water absorption
bands removal)

> previous studies available for this scene [Dob+-09; Hal+11; EDT11]
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Experiments on real data (1)
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Figure 5: Abundance maps estimated for the Moffett scene.
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PLMM
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Experiments on real data (I11)

> Variability energy concentrated on interface areas (possible nonlinearities).
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Figure 6: Spatial distribution of the variability w.r.t. each endmember estimated for
the Moffett dataset. The maps are presented in terms of the variability energy for
visualization purpose (|[dm;,n|l2/V/L for the rth endmember in the nth pixel).
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Experiments on real data (1V)

» Variability peaks: result from spectral bands with a poor SNR.
» Notable estimation improvement for the water signature.
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Figure 7: Endmembers estimated for the Moffett scene (red lines), VCA in black, and
variability in cyan.
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Online unmixing

Overview

2. Online unmixing of MTHS images
m Context and motivations
= Model and problem formulation
m Experiments on real data
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Online unmixing
°

Context and motivations

» Data: multi-temporal hyperspectral (MTHS) images
> similar materials expected to be observed over time;
> exploit temporal information redundancy (possibly smooth variations
of the parameters);
> significant size of the data may preclude the use of batch procedures.

» Varying acquisition conditions may affect the shape and the amplitude of
the endmembers.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 8: Sequence of hyperspectral images analyzed in this section.
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Online unmixing
@000

As a first approximation, endmember variability is assumed to be uniform on
each image

~» significant reduction in the number of unknown parameters.

PLMM variant [Thouvenin et al., IEEE TIP 2016]

Y.=(M+dM)A, +B,, Vt=1,...,T (10)

M>0.r Ac>0rny, Allg=1y

17
= dM

(11)

<k, [[dMle < v
F
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Online unmixing
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Problem formulation

Proposed approach: online unmixing — the available data are sequentially
processed to estimate the mixture parameters (based on [Mai+10])

~> problem formulated as a two stage stochastic program

Problem statement

i (M) = Ev.aau [F(Y.M,A,am)] st. (11)

F(Y,M, A, dM) = % [Y = (M + dM)A|2 + a®(A) + BY(M) + 4T (dM).

where ®, and T promote smooth temporal variations of the associated
parameters.

<

Stochastic approximation

1 t
g:(M) = 2 D IIY; = (M +dM)A|2 + ¥ (M)
i=1

_ % B Tr(M™MC,) + Tr(MTDt)] +AYU(M) + c.
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Online unmixing
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Two stage stochastic program

Two stage stochastic program (see, e.g., [RX11])
» acquire an HS image Yq;
> estimate the corresponding abundance and variability terms, solution to a
first optimization problem (first stage problem)
(A, dM) € argmin  F(Y, METD A dM); (12)
(A,dM)€ AR X D¢
» update the endmember matrix using the newly extracted information, as a
solution to the second stage problem

M = arg min g:(M). (13)
MeM
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Online unmixing
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Proposed algorithm
[Thouvenin et al., IEEE TIP 2016]

Remark: a convergence result can be obtained (under milder assumptions than
those considered in the manuscript) by interpreting the proposed algorithm as
an instance of the BC-VMFB algorithm [CPR16].

Algorithm 3: Online unmixing algorithm.

Data: M, A, dMp, & >0, 8 > 0, v > 0, ¢ €]0,1]

begin
Co < Og,r;
Do < 0. r;
Eo < OL,r;
fort =1to T do
a Random selection of an image Y, (random permutation of the image sequence);
// Abundance and variability estimation by PALM [BST13]
b (A, dM,) €  argmin (Y, ME—D A dM);
(A.dM)E AR X D¢
Ci + €Ci1 + A:A;r§
D: « &De—1 + (dM:A; — Y,)AT;
E: <+ §Ei—1 +dMy;
// Endmember update [Mai+10, Algo. 2]
c M)+ arg min g, (M);
| Me M

Result: M(T), {(A;,dM)}ior ... 7
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Online unmixing
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Experiments on real data (1)

Data:

» sequence of AVIRIS HS images, acquired of the Mud Lake area (California,
USA) between 2014 and 2015;

» 173 exploited bands, outlier corrupted pixels removed from Fig. 9d prior to
the unmixing procedure.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15
Figure 9: Mud Lake dataset.

Remark:

> Sensitivity to outliers ~ robust unmixing of MTHS images (details in the
manuscript).
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Online unmixing
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Experiments on real data (1)
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Figure 10: Water abundance maps. Figure 11: Vegetation abundance maps.
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Online unmixing
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Experiments on real data (I11)
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Figure 12: Estimated endmembers (red lines) and their variants affected by variability (blue lines).

of
500 1000 1500 2000
. (am)

(b) Soil (VCA)

o \
8025 2.
3oz ¥
fos

(h) Seil (OU)

; N
e

(c) Veg. (VCA)

H

3 AA
o4 [ M ‘
02 / A

S0 1000 1500 2000
. (am)

(f) Veg. (NMF)

500 1000 1500 2000
. (am)

(i) Veg. (OU)

October 17, 2017

26 / 42




Distributed unmixing

Overview

3. A partially asynchronous distributed unmixing algorithm
= Motivations
= Simulations on synthetic data
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Distributed unmixing

0000000

Motivations

» Images composed of a possibly large number of pixels ~+ use of distributed
unmixing procedures
> master-slave configuration;

Figure 13: Single HS image divided into sub-images assigned to different nodes.
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Distributed unmixing

0000000

Motivations

» Images composed of a possibly large number of pixels ~+ use of distributed
unmixing procedures
> master-slave configuration;

Figure 13: Sequence of images, each assigned to a computing node.
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Motivations

Distributed unmixing
0000000

> Images composed of a possibly large number of pixels ~~ use of distributed

unmixing procedures
> master-slave configuration;

» Asynchronicity: account for possible discrepancies in the performance of
the computational nodes, reduce idle time periods (compared to

synchronous algorithms);

Worker 3 -
Worker 2 -
Worker 1 -
Master ‘ ‘ -
L |
0 1 Iteration k

(a) Synchronous system.

Worker 3 -
Worker 2 -
Worker 1 -
Master ‘ ‘ ‘ ‘ -
L I I
0 1 2 3 lteration k

(b) Asynchronous system.

Figure 13: lllustration of a synchronous and an asynchronous distributed mechanism
(idle time in white, transmission delay in light gray, computation delay in gray).
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Distributed unmixing
0000000

Motivations

> Images composed of a possibly large number of pixels ~~ use of distributed
unmixing procedures
> master-slave configuration;
» Asynchronicity: account for possible discrepancies in the performance of
the computational nodes, reduce idle time periods (compared to
synchronous algorithms);

Worker 3 -
Worker 2 -
Worker 1 -

Master -

0 1 Iteration k

(a) Synchronous system.

Worker 3 -
Worker 2 -
Worker 1 -

Master ‘ -

0 1 2 3 lteration k

(b) Asynchronous system.

Figure 13: lllustration of a synchronous and an asynchronous distributed mechanism
(idle time in white, transmission delay in light gray, computation delay in gray).

» Significant number of asynchronous algos. recently proposed [CE16;
Pen+16a; BJ13; PR15; Sra+16; Li+14; Davl6; Cha+16; FSS15;

Pen+16b; Scu+17]

> only (a few) synchronous distributed unmixing procedures in the
literature [RR13; Sig+16; Sig+17].

P.-A. THOUVENIN, IRIT/INP-ENSEEIHT

Spatial & temporal variabilities in HS unmixing

October 17, 2017



Distributed unmixing
O@00000

Objective

Develop an asynchronous unmixing procedure inspired from the PALM
algorithm [BST13; CPR16]

» the standard PALM algorithm easily leads to a synchronous distributed
unmixing algorithm
~~ reference to assess the interest of the asynchronicity;

> convergence guarantees in the synchronous [BST13; CPR16], and
asynchronous case [Can+16].
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Distributed unmixing
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Problem formulation

Unmixing problem

(A*,M™) € argmin {F(A, M) + a®(A) + tag (A)
A,M

(14)
+BYU(M) + 20y (M)} with

1 !
1
FAM) = S A(MA) = 257 [V~ MA
i=1 i=1

Ars={AcR™ : a, eS8, Vne{1,.---,J}}
Sr={xeRF: x,>0and x"1g =1}

> 15 : indicator function of the set S (ts = 0 if x € S, 400 otherwise)
» ® et W : appropriate convex penalties

> in general, ® is separable to allow a distributed estimation (14);
> in the following : ® =0, V is the mutual distance between the
endmembers [Ber+04].

P.-A. THOUVENIN, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017 30/ 42



Distributed unmixing
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Asynchronous distributed unmixing algorithm (1)

» Each worker updates a subset of the abundance coefficients;

» The master node aggregates the information transmitted by the workers to
update the endmembers.

fi, 1, Ar fo, o, As 3, 3, A3

Figure 14: Distribution of the estimation tasks between the computing nodes (for
| = 3 data blocks).
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Distributed unmixing
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Asynchronous distributed unmixing algorithm (I1)

Algorithm 4: Algorithm of the ith worker.

Data: M, Z\;.
begin B
Wait for updated endmembers from the master node, (M, A;);

~ ~ 1 ~

Aicprox,, (Ai——Vafi(A,M));
PrOX, 4 oy hifi (AL M)

Broadcast A,- to the master node;

Result: A,’.

N, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing
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Distributed unmixing
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Asynchronous distributed unmixing algorithm (111)

Algorithm 5: Algorithm of the master node.
Data: A%, M°, ;1 €]0,1[ (u = 107°).
M1 k«0;

while stopping criterion not satisfied, do
Wait for A from one of the workers ;
// Abundance update

w1 | AFHAR(AF A, =i
T AR £ '
// Endmember update
oy (Mk _ ﬁVM[F(AkH, Mk) +ﬂw(Mk)]);
ML — MK _'_,Yk('\"/lk _ Mk);
// Relaxation coefficient update
A =41 = )
// Broadcast new estimate to the worker i*
Broadcast (M*™*, A%™) to the worker i*;
k+— k+1;

Result: AX, M*.

MK = prox

Similar algorithm in presence of variabilit
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Distributed unmixing
O00000e

Distributed unmixing in presence of variability

R
Yn = Z(mr = dmr,n)ar,n aF bn (15)
=il
Additional constraints:
[dM, || < v, where dM,, = [dmy o, . .., dmg ,] (16)

Remarks:
» data distribution similar to the previous case;
> parallel estimation of the abundance coefficients and the variability terms;

> non-negativity constraints on the perturbed endmembers removed
(limitation resulting from the asynchronicity).
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Distributed unmixing
@000

Simulations on synthetic data (LMM) (1)

» Data : 3 HS images, composed of R = 9 endmembers, L = 413 spectral
bands;

> Images: 100 x 100 pixels,corrupted by an additive Gaussian noise such
that SNR = 30 dB;

» Performance evaluation for | = 3 processus;
> Initialization: VCA [NB05] / FCLS [HCO1];

» Comparison of the algo. with its synchronous counterpart, both
implemented in Julia [Bez+17].

Table 1: Simulation results on synthetic data.

Sync. Async.
aSAM(M) (°)  9.74e-01  1.04e+00
GMSE(A) 3.48e-04  5.25e-04
RE 1.05e-04 1.07e-04
aSAM(Y) (°)  2.23e-02  2.24e-02
time (s) 1.39e+03  3.33e+02
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Distributed unmixing
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Simulations on synthetic data (LMM) (I1)
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Figure 15: Objective function versus computation time for the synchronous and
asynchronous unmixing algorithms (until convergence) [LMM].

Remarks:
» asynchrony promising in terms of computation time (to reach
convergence);

» slight performance decrease.

October 17, 2017
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Distributed unmixing
[e]o] ]o)

Simulations on synthetic data (PLMM) (1)

» Data: 3 HS images, composed of R = 3 endmembers, L = 413 spectral
bands;

> Images: 100 x 100 pixels, corrupted by an additive white Gaussian noise
such that SNR = 30 dB.

o
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o
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2 So03 5 03
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< 20.25
202 &o2 ' € 02
01 | 0.1 /\ 0.15,
N !
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Figure 16: Example of the endmembers (in red) and the corrupted endmembers (in
blue) used in the experiments.
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Distributed unmixing
oooe

Simulations on synthetic data (PLMM) (1)

140 |

1 ‘
» \
1o LU

100

F(AF, M, dM*) + 50(M¥)

9

80

10! 102

time (s)

Figure 17: Objective function versus computation time for the synchronous and
asynchronous unmixing algorithms (until convergence) [PLMM].

Remarks:

> the results between the synchronous and asynchronous algorithm can differ
significantly;

> the asynchronous procedure can converge to a less interesting stationary
point than its synchronous counterpart (main limitation).
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Conclusion and perspectives

Overview

4. Conclusion and perspectives
= Conclusion
= Perspectives
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Conclusion and perspectives
[

Conclusion

Variability modeling:
> Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM
> represents variability within a single HS image;
> spatially/spectrally characterizes the observed variability;
> deterministic counterpart of the NCM [Ech+10].
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Conclusion and perspectives
[

Conclusion

Variability modeling:
> Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM
> represents variability within a single HS image;
> spatially/spectrally characterizes the observed variability;
> deterministic counterpart of the NCM [Ech+10].
» Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)
> represents abrupt and smooth spectral variations occurring over time
(information redundancy);
» model developed within a Bayesian framework.
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Conclusion and perspectives
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Conclusion

Variability modeling:
> Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM
> represents variability within a single HS image;
> spatially/spectrally characterizes the observed variability;
> deterministic counterpart of the NCM [Ech+10].
» Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)
> represents abrupt and smooth spectral variations occurring over time
(information redundancy);
» model developed within a Bayesian framework.
Computational considerations:
» Study of an online unmixing algorithm to analyze multi-temporal HS
images
» exploits information redundancy between consecutive images;
» compromise between computational cost and accuracy.
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Conclusion and perspectives
[

Conclusion

Variability modeling:
> Introduction of an explicit mixture model inspired from the total least
squares problem, referred to as PLMM
> represents variability within a single HS image;
> spatially/spectrally characterizes the observed variability;
> deterministic counterpart of the NCM [Ech+10].
» Robust variant of the PLMM to represent temporal endmember variability
and outliers (in the manuscript)
> represents abrupt and smooth spectral variations occurring over time
(information redundancy);
» model developed within a Bayesian framework.
Computational considerations:
» Study of an online unmixing algorithm to analyze multi-temporal HS
images
» exploits information redundancy between consecutive images;
» compromise between computational cost and accuracy.
» Preliminary study of an asynchronous distributed unmixing algorithm

> interest and limitations when compared to a synchronous version of
the same algorithm.
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Conclusion and perspectives
L Je]

Perspectives

» Variability modeling
> physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);
> promote different structures for the variability term;
> estimation of the endmember number in presence of variability.
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Conclusion and perspectives
L Je]

Perspectives

» Variability modeling
> physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);
> promote different structures for the variability term;
> estimation of the endmember number in presence of variability.
» Computational considerations

> automatic hyperparameter selection [Ste81; Del+14];

> incorporate variable metrics into the proximal algorithms considered
[CPR16; FGP15];

> relaxation to the Ising field considered in the robust unmixing

~~ leverage online estimation techniques.

P.-A. THOUVENIN, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017



Conclusion and perspectives
L Je]

Perspectives

» Variability modeling
> physically inspired models preserving a distinction between variability
modalities (non-linearities, illumination variations, ...);
> promote different structures for the variability term;
> estimation of the endmember number in presence of variability.
» Computational considerations

> automatic hyperparameter selection [Ste81; Del+14];

> incorporate variable metrics into the proximal algorithms considered
[CPR16; FGP15];

> relaxation to the Ising field considered in the robust unmixing
~~ leverage online estimation techniques.
» Application oriented developments
> application to different context: medical imagery [Cav+17],
astronomy [Rap+14; CB17];
> performance assessment for change detection, with possibly different
imaging modalities [Pre+16; YZP17; Fer417], data fusion [Wei+16].
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Conclusion and perspectives
(o] J

Thank you for your attention.
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> Link between the PLMM and methods from the literature
> Synthetic variability generation

» PLMM: experiments on synthetic data

» Online unmixing: experiments on synthetic data
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» Robust unmixing of multi-temporal HS images
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Link between the PLMM and models from the literature Back to main slide

The PLMM can be compared with two models from the literature:
> the Generalized NCM (GNCM) [HDT15]

> the two models are equivalent when considering m, , = m, + dm, ,;
> distinction in terms of the adopted estimation approach

R
Yn = ar,nMy n + bn,
2 )

my.» ~ N(m,,diag(c?)), by ~ N (0L, %%1,).
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Link between the PLMM and models from the literature Back to main slide

The PLMM can be compared with two models from the literature:
> the Generalized NCM (GNCM) [HDT15]

> the two models are equivalent when considering m, , = m, + dm, ,;
> distinction in terms of the adopted estimation approach

R
Yn = ar,nMy n + bn,
2 )
m, , ~ N(m,,diag(c?)), by~ N (0, ¥21L).

> the Extended LMM (ELMM) [Dru+16] (explicit variability model)

> variability represented in terms of spatially varying scaling factors n;
> the scaling indeterminacy introduced v, is partly addressed in the
estimation algorithm proposed in [Dru+16]

R
Yn = 'lpn Z ar,nMy + bn- (18)

r=1
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Back to main slide

nthetic variability generation

Variability generation:
> term-wise product of reference endmembers with randomly generated
affine functions
> spatially varying signatures.
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o
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o3 303 / 304
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Figure 18: Reference endmembers (red lines) and 20 corresponding instances under
spectral variability (cyan lines) involved in the synthetic data experiments.

es in HS unm October 17, 2017
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Experiments on synthetic data [PLMM] (1) Back to main slide

» Data: 128 x 64 HS images, composed of R € {3,6} endmembers, with
L = 413 bands;

» Additive white Gaussian noise: SNR = 30dB;

» Variability generation: term-wise product of reference endmembers with
randomly generated affine functions

> spatially varying signatures.
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Figure 19: Reference endmembers (red lines) and 20 corresponding instances under
spectral variability (cyan lines) involved in the synthetic data experiments.

4 /27

P.-A. THOUVENIN, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing October 17, 2017



Experiments on synthetic data [PLMM] (Il) Back to main slide

Table 2: Simulation results on synthetic data in absence of pure pixels
(GMSE(A)x 1072, GMSE(dM)x 1074, RE x107%) [(o, 8) = (2.1 x 1071,7.7 x 1079)
for R =3, (a, 8) = (7.1 x 107%,4.3 x 1079) for R = 6].

aSAM(M) () GMSE(A) GMSE(dM) RE  time (s)

VCA/FCLS 5.06 2.07 / 2.66 1
SISAL/FCLS 4.43 2.16 / 2.56 2
™  FDNS 5.06 2.06 / 2.66 3
I AEB 5.11 211 / 2.66 33
X ELMM 5.05 1.78 6.86 4.34 329
ssmdBCD/ADMM (v = 107 1) 4.56 1.49 6.21 0.08 285
ssmdPALM (v = 5 x 1072) 4.51 1.54 5.24 0.60 314
VCA/FCLS 6.55 2.52 / 2.82 4
SISAL/FCLS 6.04 1.63 / 2.02 5
©  FDNS 6.55 253 / 2.82 7
I AEB 6.00 1.78 / 1.85 208
X ELMM 6.54 1.98 4.13 0.60 555
ssmdBCD/ADMM (v = 1) 6.19 2.19 2.89 0.81 618
ssmdPALM (v =2 x 1071) 6.05 221 2.73 1.82 449
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Experiments on synthetic data [PLMM] (llI) Back to main slide

Material 1 Material 2 Material 3

Material 1~ Material 2 Material 3

TRUE
TRUE

VCA
ELMM

0.05
0.04
0.03
0.02
0.01

ELMM
BCD/ADMM

BCD/ADMM

0.02

PALM

0.01

PALM

;
‘ZL’Z
|

0

Figure 21: Spatial distribution of the
estimated variability w.r.t. each
endmember, presented in terms of its
energy (||dm, ,|l2/V/L for the rth
endmember in the nth pixel).

Figure 20: Estimated abundance maps
obtained from the synthetic dataset in
absence of pure pixels composed of

R = 3 endmembers.
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Experiments on synthetic data [OU] (I) Back to main slide

Data:

» sequences of 10 HS images of size 98 x 102, composed of 173 spectral
bands;

» endmembers affected by smoothly varying endmember variability,
smoothly evolving abundance maps;

» data corrupted by an additive white Gaussian, SNR = 30dB.

Table 3: Simulation results on synthetic data (GMSE(A)x 1072, GMSE(dM)x10~4,

RE x10~%).
aSAM(M) (°)  GMSE(A)  GMSE(dM) RE  aSAM(Y) (°) time (s)

VCA 16.8 4.20 / 0.37 2.81 1.4
SISAL 16.5 3.83 / 0.35 2.75 3

™ 45 NMF 19.4 7.39 / 0.77 3.1 189

I PLMM 17.2 4.22 0.65 0.12 1.53 380

X ou 4.70 0.27 2.07 0.34 2.75 156
PALM 5.02 9.67x1073 1.81 0.34 2.75 37
DSU [HCJ16] 2.87 0.35 1.74 3.57 2.76 24
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Experiments on synthetic data [OU] (I1) Back to main slide
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Figure 22: Abundance maps of the first endmember used in the synthetic mixtures.
The top line indicates the theoretical maximum abundance value and the true number
of pixels whose abundance is greater than 0.95 for each time instant.
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Experiments on synthetic data [OU] (lI1) Back to main slide
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Figure 23: Estimated endmembers from the synthetic hyperspectral time series
(extracted endmembers are represented in red, variability in blue dotted lines).
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Endmember number: a geometrical illustration Back to main slide

Figure 24: Data projected on the R — 1 simplex containing the data (linear model)
(image taken from [Dob+-09]).
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Context and motivations Back to main slide

Observations:

» some of the observed materials present moderate variations across time
(man-made constructions, ...);

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 () 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same
area at different time instants.
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Context and motivations Back to main slide

Observations:

» some of the observed materials present moderate variations across time
(man-made constructions, ...);

> signatures corresponding to materials present in the different images
> realizations of reference endmembers ~~ variability;

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 () 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same
area at different time instants.
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Context and motivations Back to main slide

Observations:

» some of the observed materials present moderate variations across time
(man-made constructions, ...);
> signatures corresponding to materials present in the different images
> realizations of reference endmembers ~~ variability;

> abrupt variations may occur (e.g., when water or vegetation are present in
the observed scene)

> new material or a sensor default ~~ abrupt spectral changes ~~ outlier
w.r.t. the commonly shared materials.

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 () 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same
area at different time instants.
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Proposed a pproach Back to main slide

Proposed approach:

» unmix a reference HS image to obtain an initial estimate for the
endmembers;

> use / refine this result when unmixing the remaining images.

Model:
> represent smooth endmember variations as temporal variability;

> interpret abrupt spectral variations in terms of outliers.
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Model Back to main slide

Model and constraints

Y. = (M +dM)A; + X, + B, (19)

A= Orn, Aflg =1y, Vte{1,..., T}

(20)
M>0,r, M+dM; = 0 r, X: = Oy

Likelihood function

| \

T
_ 1
p(Y | @) o H(U?) NL/2 exp <_Tﬁ |Yt — (M + th)At — Xt||'2:)

t=1

where @ = {M,dM, A, X, o?}

\

Objective: infer © from Y using p(© | Y)

~> need for priors on the different parameters/hyperparameters involved in
the model.

Parameter estimation: MCMC algorithm (Gibbs sampler) used to build
estimators of the parameters of interest.
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Hierarchical Bayesian model
[Thouvenin et al., submitted, 2017]

YA A
AN RS RS

M—»dM

Figure 26: Description of the proposed Bayesian model using a directed acyclic graph
(fixed parameters appear in boxes).
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Hierachical Bayesian model: priors (1) Back to main side

Abundance prior

> promotes smooth abundance variations (except when the corresponding
pixel contains outliers)

» abundance sum-to-one constraint relaxed (aLlR < 1) when outliers are
present in the pixel (n, t) (apparition of new materials)

an,1 ‘ Xn,t :OL NZ/lSR
an,t|Xn,t7é01_NZ/l§?, fort=1,..., T

an,t — an,r,},t

P (an,t | Xn,e = 0y, A\{a,,,t}) ocexp{—zfil21 ([ﬂnlt £ (] ‘

1sg(an,), for t > 2

2
)}
with

Sk ={x € RF|Vi,x; >0and x'1g = 1}

:ST,;:{xelRR|Vi,x,-203nd x'1z < 1}

<7r11,t ={7 < t|xnr =0}, Tr},t = max T.
-reﬂ,,{t
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Hierachical Bayesian model: priors (I1) Back to main side

Outlier prior
» promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];

> takes advantage of possible spatial correlations between these outliers by
modeling z: € RV as Ising-Markov random fields (correlations likely to
occur when new materials appear)

P(Xn,t | Zner52) = (1 — Zne)0(Xn,e) + Zn,e Nyt (O, st).

October 17, 2017
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Hierachical Bayesian model: priors (I1) Back to main side

Outlier prior

> promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];

> takes advantage of possible spatial correlations between these outliers by
modeling z: € RV as Ising-Markov random fields (correlations likely to
occur when new materials appear)

P(Xn,t I Zn,t, st2) = (1 — zn,t)(s(xn,t) + Zn,tNRi(OL, 5t2)

Variability prior

» promotes smooth endmember variations from an image to another
[Hal+15; HCJ16]

dmyg,a | me, ~ Nz, (0,v), L, = [—me,r,+00)

2 2
dmy . ¢|me.r, dmg,, -1y, ¥, ~ Nz, , (dmf,r,(t—1)7¢é,r)

» v penalizes the variability energy in the first image;

> wf,, controls the temporal evolution of the variability.

October 17, 2017 16 / 27
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Priors assigned to the remaining parameters Back to main slide

Endmember prior

» endmembers can be a priori considered to live in a subspace of dimension
K < L (PCA or rPCA [Can+09]);

> considering the decomposition used in [Dob+09] leads to
m, = (I, —UU")y+Ue, U'U=Ik

where U is a basis of the subspace and y is the sample mean of Y;

> projected endmembers e, are assigned a truncated multivariate Gaussian
prior to ensure the non-negativity of m,

e, ~ Ng, (0k,&lk), forr=1,...,R. (21)

Hyperparameter priors

> conjugate inverse-gamma priors assigned to the noise (%), the variability
(W?) and the outlier (s?) variances, i.e.,

O'f A Ig(acn ba)a ¢%,r ~ Ig(a\l’v b‘U)a 51.*2 ~ Ig(as» bS) (22)

where a, = b, = ay = by = as = bs = 1073.
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Parameter estimation

Back to main slide

Algorithm 6: Proposed Gibbs sampler.

Input: Nyi, Nuc, ©, B, &, au, bu, as, bs, 3, bo, v, €.
for g = 1 to Npyc do
for (n,t) = (1,1) to (N, T) do

L Draw afﬁ)t ~ P(an,t [ Yot e\{an,t}) ;
forr=1to R do

L Draw e{? ~ pler | Y,0O\(e})
fort =1to T do

L Draw dM\ ~ p(dM, | Y:, O\ ram,}) :
for (n,t) = (1,1) to (N, T) do

Draw z,(,f?g ~P[znt | Ynes e\{zmt}] '

Draw x7) ~ p(xn,e | O\ (xy0})
fort =1to T do

L Draw s2¥ ~ p(s? | @\{stz}) ;

fort =1to T do
L Draw a'f(q) ~p(o? | @\{U?}) ;
for (¢,r) = (1,1) to (L, R) do

L Draw 7 ~ p(¥7, 1O\ (yz )

fort=1to T do
L Draw 3; (Metropolis-Hastings step) ;

N, IRIT/INP-ENSEEIHT Spatial & temporal variabilities in HS unmixing
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Experiments on synthetic data (I) Back to main slide

Data generation:

» MTHS image composed of 10 images of size 50 x 50, L = 413 bands,
affected by smooth time-varying variability and additive white Gaussian
noise;

> mimics the emergence of a previously undetected material in a few pixels
within specific images ~ outliers.

Algorithmic setting (synthetic data):

» X =0, n, dM? = 0,g, 289 =0, 07@ = 1074, }© = 1073,
i =5x107% 80 = 1.7;

» numerical constants: €, = 1073, v = 1073,

» Nmc = 400 M-C iterations, with Ny,; = 350 burn-in iterations.

Table 4: Simulation results on synthetic multi-temporal data (GMSE(A)x 1072,
GMSE(dM)x10~4, RE x10~%).

aSAM(M) (°)  GMSE(A) GMSE(dM) RE time (s)

. VCA/FCLS 6.07 2.32 / 3.91 1
=  SISAL/FCLS 5.07 1.71 / 2.28 2
- RLMM 5.13 2.04 / 0.31 463
| DSsu 5.18 0.53 115 2.21 8
o ou 1.90 0.42 3.22 2.61 98
Proposed 2.03 0.15 1.85 2.00 2530
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Experiments on synthetic data (1) Back to main slide

TRUE

BRIBEI

VCA

SISAL

ou RLMM

MCMC

Figure 27: Abundance maps estimated for the third endmember for t =1 to 6. The
areas corrupted by outliers are delineated in red.
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Experiments on synthetic data (1) Back to main slide

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Figure 28: Ground truth (first row) and estimated labels (second row) obtained with
the proposed method for t =1 to 10, where each column corresponds to a time
instant [0 in black, 1 in white].

1
.-.-. -
0

Figure 29: Map of the re-scaled abundance estimation errors for the third endmember
at time t = 2 (from left to right: true abundances, estimation error of VCA/FCLS,
SISAL/FCLS, rLMM, OU and the proposed method). Except for the proposed
method, the results exhibit notable errors in pixels corrupted by outliers (area in red).

Ground truth

Estimated labels
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Back to main slide

Experiments on synthetic data (V)
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Experiments on synthetic data (V) Back to main slide
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Experiments on real data (1) Back to main side

Data:

» real sequence of 100 x 100 HS images acquired by the AVIRIS sensor, Mud
Lake, California, USA;

> 173 exploited bands, out of the 224 available bands.

Y

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 16/10/15

Figure 32: Scenes used in the experiment, given with their respective acquisition date.
The area delineated in red in Fig. 32e highlights a region known to contain outliers.
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Experiments on real data (1) Back to main side
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Figure 33: Soil abundance map recovered by the different methods (in row) at each
time instant (in column) [VCA/FCLS, SISAL/FCLS, RLMM, OU, MCMC].
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Experiments on real data (I11) Back to main slide
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Figure 34: Outlier energy recovered by RLMM [FD15] and the proposed MCMC
method.

Figure 35: Non-linearity maps estimated by [Alt+13] applied to each image with the
SISAL-extracted endmembers.
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Experiments on real data (1V) Back to main side
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