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Abstract

Hyperspectral unmixing is a blind source separation problem which consists in estimating the

reference spectral signatures contained in a hyperspectral image, as well as their relative contribution

to each pixel according to a given mixture model. In practice, the process is further complexified by

the inherent spectral variability of the observed scene and the possible presence of outliers. More

specifically, multi-temporal hyperspectral images, i.e., sequences of hyperspectral images acquired

over the same area at different time instants, are likely to simultaneously exhibit moderate endmember

variability and abrupt spectral changes either due to outliers or to significant time intervals between

consecutive acquisitions. Unless properly accounted for, these two perturbations can significantly

affect the unmixing process. In this context, we propose a new unmixing model for multitemporal

hyperspectral images accounting for smooth temporal variations, construed as spectral variability,

and abrupt spectral changes interpreted as outliers. The proposed hierarchical Bayesian model is

inferred using a Markov chain Monte-Carlo (MCMC) method allowing the posterior of interest to

be sampled and Bayesian estimators to be approximated. A comparison with unmixing techniques
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from the literature on synthetic and real data allows the interest of the proposed approach to be

appreciated.

Index Terms

Hyperspectral imagery, multitemporal images, endmember variability, Markov chain Monte-Carlo

(MCMC) methods.

I. INTRODUCTION

Acquired in hundreds of contiguous spectral bands, hyperspectral (HS) images have received

an increasing interest due to the significant spectral information they convey, which is somewhat

mitigated by their lower spatial resolution in remote sensing applications. This limitation, combined

with possibly complex interactions between the incident light and the observed materials, implies that

the observed spectra are mixtures of several signatures corresponding to distinct materials. Spectral

unmixing then consists in identifying a limited number of reference spectral signatures composing

the data – referred to as endmembers – and their abundance fractions in each pixel according to

a predefined mixture model. The choice of a specific model generally reflects the practitioners’

prior knowledge on the environmental factors possibly affecting the acquisitions, such as declivity or

multiple reflections. Traditionally, a linear mixing model (LMM) is adopted since it is appropriate to

describe hyperspectral data when the declivity of the scene and microscopic interactions between the

observed materials are negligible [2]. Depending on the applications, various models have also been

investigated to capture higher order interactions (i.e., nonlinearities) between the incident light and

the observed materials (see [3], [4] for recent reviews on this topic). However, varying acquisition

conditions, such as local illumination variations or the natural evolution of the scene, may significantly

alter the shape and the amplitude of the acquired signatures [5], [6], thus affecting the extracted

endmembers. Endmember variability has hitherto been extensively considered within a single HS

image, either in a deterministic [7]–[10] or a statistical setting [11]–[13].

Recent works also considered temporal variability by exploiting the possibilities offered by multi-

temporal HS (MTHS) images [14], [15]. From a hyperspectral unmixing perspective, MTHS images,

i.e., sequences of HS images acquired over the same area at different time instants, can be of interest

to exploit information redundancy between consecutive images (e.g., through features exhibiting

moderate or smooth temporal variations as in [16], [17]) while allowing the endmember temporal

evolution to be characterized. For instance, MTHS have been recently exploited to improve endmember

unmixing results [14], [15], [18] and used in a change detection problem involving two HS images

[19], [20].
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Even though the approaches proposed in [14], [15], [18] specifically allow smooth temporal

variations of some of the mixture parameters to be considered, they do not account for abrupt

spectral changes either due to outliers or to possibly significant time intervals between two consecutive

images. In practice, such situations can be reasonably expected, depending on the acquisition dates

and possible climatic hazards, e.g., when vegetation or water is present in the observed scene. Unless

specifically accounted for, this situation frequently observed in real datasets has a significant impact

on the recovered endmembers, which motivates the present work. Inspired by [14], [21], [22], and

based on an original interpretation of the unmixing problem under study, our contribution consists in

jointly accounting for smooth endmember variations – construed as temporal endmember variability

– and abrupt changes interpreted as outliers (e.g., significant variability within a single image or

presence of non-linearities) using a carefully designed hierarchical Bayesian model. More precisely,

we focus our analysis on scenes in which mostly the same materials are expected to be observed from

an image to another. In this context, using the endmembers extracted from the reference scene as a

starting point to unmix the whole MTHS image constitutes a reasonable attempt to generalize the

analyses previously conducted for a single image. On the one hand, the endmembers identified in each

single image can in fine be considered as time-varying instances of reference signatures shared by the

different images, thus justifying the use of a modified version of the perturbed linear mixing model

(PLMM) proposed in [15]. This formulation will notably allow smooth spectral variations occurring

over time to be captured, leading to competitive results when compared to methods analyzing the

images individually. On the other hand, the signatures corresponding to materials appearing in only

a few images, which induce abrupt spectral changes, can be regarded as outliers with respect to

the commonly shared endmembers. This paper studies a new Bayesian model allowing both spectral

variability and presence of outliers to be considered in the unmixing of MTHS images. The resulting

unmixing task is solved using a Markov chain Monte-Carlo (MCMC) allowing the posterior of interest

to be sampled and Bayesian estimators to be approximated.

The paper is organized as follows. The mixing model considered in this paper is introduced in

Section II, and the associated hierarchical Bayesian model is developed in Section III. Section IV

investigates a Gibbs sampler to solve the resulting mixed integer non-linear problem. The performance

of the proposed approach on synthetic and real data is studied in Sections V and VI. In particular,

the results obtained with the proposed method are compared to those of the VCA/FCLS algorithm

[23], [24], the SISAL/FCLS algorithm [25], the algorithm associated with the robust LMM (RLMM)

proposed in [26] and the MTHS optimization method [15]. Finally, Section VII concludes this work

and outlines further research perspectives.
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II. PROBLEM STATEMENT

We consider a sequence of HS images acquired at T different time instants over the same area,

where mostly the same materials are expected to be observed over time. In the following, at most R

endmembers are assumed to be shared between the T images composing the sequence, where R is

a priori known. Since the observed instances of a given endmember can be reasonably expected to

vary from an image to another, we propose to account for smooth endmember spectral variations via

a modified version of the perturbed linear mixing model (PLMM) proposed in [10], [15]. Inspired by

the total least squares problem [27], the PLMM consists in representing each pixel ynt by a linear

combination of the R endmembers – denoted by mr – affected by an additive error term dmr,t

accounting for temporal endmember variability. However, this model shows notable limitations when

the vector yn,t is affected by abrupt changes. Consequently, this paper investigates a new unmixing

model jointly accounting for endmember variability and abrupt changes possibly affecting MTHS

images. To this end, the proposed model is a generalized PLMM, which includes an additional

term xn,t to capture significant deviations from the LMM, i.e., significant spatial variability or non-

linearities within each image [21], [26]. The resulting observation model can thus be written

yn,t =

R∑

r=1

ar,n,t

(
mr + dmr,t

)
+ xn,t + bn,t (1)

for n = 1, . . . , N and t = 1, . . . , T , where yn,t denotes the nth image pixel at time t, mr is the rth

endmember, ar,n,t is the proportion of the rth endmember in the nth pixel at time t, dmr,t denotes

the perturbation of the rth endmember at time t, and xn,t denotes the contribution of outliers in the

nth pixel at time t. Finally, bn,t represents an additive noise resulting from the data acquisition and

the modeling errors. The so-called robust PLMM can be written

Yt = (M+ dMt)At +Xt +Bt (2)

where Yt = [y1,t, . . . ,yN,t] is an L ×N matrix containing the pixels of the tth image, M denotes

an L × R matrix containing the endmembers that are common to all the images of the sequence,

At is an R × N matrix composed of the abundance vectors an,t, dMt is an L × R matrix whose

columns contain the variability inherent to the tth image, Xt is an L×N matrix whose columns are

the outliers present in the image t, and Bt is an L × N matrix accounting for the noise at time t.

The constraints considered to reflect physical considerations are

At � 0R,N , AT
t 1R = 1N , ∀t ∈ {1, . . . , T}

M � 0L,R, M+ dMt � 0L,R, ∀t ∈ {1, . . . , T}

Xt � 0L,N , ∀t ∈ {1, . . . , T}

(3)

where � denotes a term-wise inequality. Note that the outlier term Xt is intended to describe abrupt

changes due for instance to the appearance of one or several new endmembers that were not present
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in the reference image. This justifies the corresponding non-negativity constraint, similar to the one

imposed on the other endmembers. Note however that different phenomena not considered in this

work, possibly represented by the terms Xt, can induce a decrease in the total reflectance, e.g.,

shadowing effects or some nonlinearities as detailed in [28]. To address this case, the non-negativity

constraint on the outlier terms Xt should be removed.

Given the mixture model (2), the unmixing problem considered in this work consists in inferring the

abundances At, the endmembers M, the variability dMt and the outliers Xt from the observations

Yt, t = 1, . . . , T . In the next section, this problem is tackled in a Bayesian framework to easily

incorporate all the prior knowledge available on the mixture parameters.

III. BAYESIAN MODEL

This section details the specific structure imposed on the parameters to be inferred via appropriate

prior distributions. Note that dependencies with respect to constant parameters are omitted in the

following paragraphs to simplify the notations.

A. Likelihood

Assuming the additive noise bn,t is distributed according to a Gaussian distribution bn,t ∼ N (0L, σ
2
t IL),

the observation model (2) leads to

yn,t | M,dMt,At,Xt, σ
2
t ∼ N

(
(M+ dMt)an,t + xn,t, σ

2
t IL

)
.

In addition, assuming prior independence between the pixels within each image and between the

images Yt themselves, the likelihood function of all images Y
¯
= [Y1, . . . ,YT ] is

p(Y
¯
|Θ) ∝

T∏

t=1

(σ2t )
−NL/2×

exp
(
−

1

2σ2t
‖Yt − (M+ dMt)At −Xt‖

2
F

) (4)

where the underline notation stands for the overall set of the corresponding parameters, ‖·‖F is the

Frobenius norm, Θ = {Θp,Θh} and

Θp = {M,dM
¯
,A

¯
,X

¯
,σ2,Z}, Θh = {Ψ2, s2,β} (5)

denote the parameters and hyperparameters whose priors are defined in the following paragraphs.

Note that the independence assumption between the observed images conditionally on the unknown

parameters is justified by the fact that the sequence of images has been acquired by possibly different

sensors at different time instants.

Remark. The proposed method can easily accommodate different structures for the noise covariance

matrix (e.g., diagonal or full covariance matrix) in case the correlation between the spectral bands is
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significant (see, e.g., [29]). However, this modification would increase the computational and memory

cost of the estimation algorithm introduced in Section IV.

B. Parameter priors

1) Abundances: We propose to promote smooth temporal variations of the abundances between

successive time instants for pixels that are not classified as outliers. To this end, we first introduce

the binary latent variables zt ∈ {0, 1}N to describe the support of the outliers (i.e., zn,t = 0 in the

absence of outliers in the pixel (n, t), 1 otherwise). With this notation, we introduce a new abundance

prior defined for n = 1, . . . N as

an,1 | zn,1 = 0 ∼ USR
(6)

an,t | zn,t = 1 ∼ U
S̃R
, for t = 1, . . . , T (7)

p
(
an,t | zn,t = 0,A

¯
\{an,t}

)
∝ exp

{
−

1

2ε2n
×

(
[T 1

n,t 6= ∅]‖an,t − an,τ1
n,t
‖22

)}
1SR

(an,t), for t ≥ 2

(8)

where USR
denote the uniform distribution on the set SR, 1SR

is the indicator function of the set SR,

[P] denotes the Iverson bracket applied to the logical proposition P , i.e.,

[P] =





1, if P is true;

0, otherwise

and

SR = {x ∈ R
R | ∀i, xi ≥ 0 and xT1R = 1} (9)

S̃R = {x ∈ R
R | ∀i, xi ≥ 0 and xT1R ≤ 1} (10)

T
1
n,t = {τ < t | zn,τ = 0} , τ1n,t = max

τ∈T 1
n,t

τ. (11)

By convention, we set T 1
n,t = ∅ when t = 1. To be more explicit, consider an image at time t

and a pixel n within this image which is not corrupted by outliers (i.e., zn,t = 0). For t = 1, a

uniform distribution defined in the unit simplex is selected to reflect the absence of specific prior

knowledge while accounting for the related constraints in (3). For t > 1, smooth variations of an,t are

promoted via a one-dimensional Gaussian Markov field [13], [30] penalizing the Euclidean distance

between an,t and the abundance of the last corresponding outlier-free pixel in the preceding images

of the sequence, i.e., at time instant τ1n,t. On the contrary, when outliers are present in the pixel (n, t)

(xn,t = 1), the usual abundance sum-to-one constraint is relaxed (aTn,t1R ≤ 1) so that the prior allows

cases in which the linear model does not exhaustively describe the data to be addressed. Note that the

a priori independence assumptions between the abundance vectors an,t (conditionally to the labels
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zn,t) is reasonable from a physical point of view, since they can evolve independently from a pixel

to another. In the following, the joint abundance prior is denoted by

p(A
¯
| Z) =

N∏

n=1

[ Jn∏

j=1
tj :zn,tj

=1

p(an,tj | zn,tj = 1)

]

×

[ In∏

i=1
ti:zn,ti

=0

p(an,ti | an,ti−1
, zn,ti = 0)

] (12)

with In = ♯{t : zn,t = 0}, Jn = T − In and ♯ denotes the cardinal operator. Note that the events

[zn,t = 0] and [xn,t = 0L] (respectively [zn,t = 1] and [xn,t 6= 0L]) are equivalent, which allows

p(A
¯
| X

¯
) to be defined.

In the following paragraph, the latent variables zn,t are assigned a specific prior to reflect the fact

that outliers are a priori assumed to represent a limited number of pixels within the sequence of

image.

2) Outliers X
¯

and label maps Z: Similarly to [21], outliers are a priori assumed to be spatially

sparse. Different approaches have been proposed in the literature to include this prior knowledge,

either relying on the ℓ1 penalty (such as the LASSO [31]) or on mixtures of probability distributions

involving a Dirac mass at zero and a continuous probability distribution [32] (such as the Bernoulli-

Laplace [33] or Bernoulli-Gaussian distributions [34], [35], extensively used in the literature [36]–

[38]). In this work, we propose to assign the following prior to the outliers xn,t to promote spatial

sparsity

p(xn,t | zn,t, s
2
t ) = (1− zn,t)δ(xn,t) + zn,tNR

L
+
(0L, s

2
t ) (13)

where NR
L
+

denotes a Gaussian distribution truncated to the set RL+. Note that zn,t = 1 if an outlier

is present in the corresponding pixel, and 0 otherwise. The proposed prior notably allows outliers

to be a priori described by a truncated Gaussian distribution when zn,t = 1, since the outliers xn,t

are mainly due to the appearance of new endmembers (i.e., that were not present in the reference

image). With this context in mind, we further propose to promote spatial correlations between the

outliers’ support, since new materials are likely to appear in multiple contiguous pixels. The binary

label maps zt ∈ R
N (t = 1, . . . , T ) are consequently modeled as Ising-Markov random fields [13],

[39], [40], for which the Hammersley-Clifford theorem yields

p(zt | βt) =
1

C(βt)
exp

(
βt

N∑

n=1

∑

k∈V(n)

δ(zn,t − zk,t)

)
(14)

where V(n) denotes the 4-neighbourhood of the pixel n, and C(βt) is the partition function [41].

In practice, the outlier terms xn,t can be assumed to be a priori independent conditionally on zn,t

(since the values of outliers are not a priori correlated over space and time from a physical point of
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view). A similar assumption can be made on the labels zt, which leads to

p(X
¯
| Z, s2) =

∏

n,t

p(xn,t | zn,t, s
2
t ) (15)

p(Z | β) =
∏

t

p(zt | βt) (16)

with Z ∈ R
N×T and β ∈ R

T . Note that the prior (13) leads to the following result, which will be

useful to sample the label maps in Section IV-E

p(xn,t |z\n,t, s
2
t , βt)

= (1− ωn,t)δ(xn,t) + ωn,tNR
L
+
(0L, s

2
t IL)

where z\n,t denotes the label map zt whose nth entry has been removed, and

ωn,t =
1

C
exp

(
βt

∑

k∈V(n)

δ(1− zk,t)

)
. (17)

with C =
∑1

i=0 exp
(
βt

∑
k∈V(n) δ(i− zk,t)

)
.

3) Endmembers: A non-informative prior is adopted for the endmember matrix M to reflect the

absence of specific prior knowledge about the spectral signatures contained in the image. More

precisely, as in previous studies related to hyperspectral unmixing [13], [21], we consider the following

truncated multivariate Gaussian distribution

mr ∼ NR
L
+
(0L, ξIL), for r = 1, . . . , R (18)

where ξ is set to a sufficiently large value to ensure an uninformative prior (e.g., ξ = 1). Assuming the

endmembers mr are independent (which is physically reasonable since the endmembers characterize

different materials), the joint prior for the endmembers can be written as

p(M) =

R∏

r=1

p(mr). (19)

In addition, the endmembers can be a priori assumed to live in a subspace of dimension K = R− 1

[42] whose practical determination can be performed by a principal component analysis (PCA) or

a robust PCA (rPCA) [43]. This dimensionality reduction step is essentially aimed at reducing the

computational complexity of the proposed approach. More explicitly, the PCA applied to the original

data Y
¯

leads to a decomposition which can be expressed as [42]

mr = Uer + y̌, y̌ = (IL −UUT)ȳ, UTU = IK (20)

where U denotes a basis of the subspace of dimension K and ȳ denotes the average spectral signature

obtained from Y
¯

. Note that using an rPCA would result in similar expressions (modulo a simple

change of notations). The projected endmembers er are then assigned the following truncated Gaussian

prior, which ensures the non-negativity of the endmembers

er ∼ NEr
(0K , ξIK), for r = 1, . . . , R (21)
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with

Er = [e−1,r, e
+
1,r]× . . .× [e−K,r, e

+
K,r] (22)

e−k,r = max
ℓ∈U+

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r

uℓ,k

)
(23)

e+k,r = min
ℓ∈U−

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r

uℓ,k

)
(24)

U−
k = {r : uk,r < 0}, U+

k = {r : uk,r > 0}. (25)

4) Endmember variability: We consider a prior for the vectors dmr,t (associated with the end-

member variability) promoting smooth temporal variations while accounting for the term-wise non-

negativity of the observed endmembers (i.e., mr + dmr,t � 0L,R), expressed as

dmr,1 | mr ∼ NIr
(0L, νIL) (26)

dmℓ,r,t | mℓ,r, dmℓ,r,(t−1), ψ
2
ℓ,r ∼ NIℓ,r

(
dmℓ,r,(t−1), ψ

2
ℓ,r

)
(27)

for ℓ = 1, . . . , L, r = 1, . . . , R, t = 1, . . . , T , where Ir = I1,r × . . .×IL,r and Iℓ,r = [−mℓ,r,+∞).

Assuming a priori independence between the different endmember variabilities (since the variability

can be independent from a material to another), the joint variability prior can finally be expressed as

p(dM
¯

| M,Ψ2) =

R∏

r=1

[
p(dmr,1 | mr)

×
T∏

t=2

p(dmr,t | mr,dmr,(t−1),ψ
2
r)

]
.

(28)

5) Noise variance: A non-informative inverse-gamma conjugate prior is selected for the noise

variance

σ2t ∼ IG(aσ, bσ) (29)

for t = 1, . . . , T , with aσ = bσ = 10−3 in order to ensure a weakly informative prior. The noise

variances σ2t can be assumed to be a priori independent (given the absence of a priori correlation

between the noise in different images), thus leading to

p(σ2) =
∏

t

p(σ2t ). (30)

C. Hyperparameters

In order to complete the description of the proposed hierarchical Bayesian model, we consider

the following generic priors for the different hyperparameters. Note that the a priori independence

assumptions made in this section are more of a computational nature, i.e., aimed at simplifying the

estimation procedure detailed in the next section.
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Y
¯

M

ξ

dM
¯

νΨ
2

aΨ bΨ

σ2

aσ bσ

A
¯

ε2

X
¯

Z s
2

β as bs

Fig. 1. Directed acyclic graph associated with the proposed Bayesian model (fixed parameters appear in boxes).

(i) Non-informative conjugate inverse-gamma priors for the variability variances Ψ2 and the outlier

variances s2, i.e., for ℓ = 1, . . . , L, r = 1, . . . , R and t = 1, . . . , T

ψ2
ℓ,r ∼ IG(aΨ, bΨ), s2t ∼ IG(as, bs) (31)

where IG(aΨ, bΨ) denotes the inverse gamma distribution and aΨ = bΨ = as = bs = 10−3.

Classical independence assumptions for the different hyperparameters lead to

p(Ψ2) =
∏

ℓ,r

p(ψ2
ℓ,r), p(s2) =

∏

t

p(s2t ). (32)

(ii) A uniform prior for the granularity parameter of a Potts-Markov random field (a fortiori of an

Ising-Markov random field). Previous studies have shown that it is reasonable to constrain the

granularity parameter to belong to the interval [0, 2] [44], leading to

βt ∼ U[0,2], for t = 1, . . . , T. (33)

Assuming the granularity parameters are a priori independent for different time instants finally

yields

p(β) =
∏

t

p(βt). (34)

D. Joint posterior distribution

Applying Bayes’ theorem, the joint posterior distribution of the parameters of interest is given by

p(Θ | Y
¯
) ∝ p(Y

¯
| Θ)p(A

¯
| X

¯
)p(X

¯
| Z, s2)p(s2)

× p(Z | β)p(β)p(dM
¯

| M,Ψ2)p(M)p(Ψ2)p(σ2).

(35)

The complexity of the proposed Bayesian model summarized in the directed acyclic graph of Fig. 1

and its resulting posterior (35) prevent a simple computation of the maximum a posteriori (MAP) or

minimum mean square (MMSE) estimators. For instance, the optimization problem associated with the

determination of the MAP estimator of Θ is clearly complex, since the negative log-posterior is non-

convex and parameterized by mixed continuous and discrete variables. In this context, classical matrix

factorization techniques such as [26] cannot be used efficiently. An MCMC method is consequently

adopted to sample the posterior (35) and to build estimators of the parameters involved in the proposed

Bayesian model using the generated samples.
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IV. GIBBS SAMPLER

This section studies a Gibbs sampler, which is guaranteed to produce samples asymptotically

distributed according to the target distribution (35). This sampler described in Algo. 1 consists in

generating samples distributed according to the conditional distribution of each parameter of interest.

Section IV-A introduces the proposed sampling method, and the conditional distributions of all the

parameters of interest (see Fig. 1) are detailed in the following paragraphs.

A. Bayesian inference and parameter estimation

The main steps of the proposed Gibbs sampler are summarized in Algo. 1. Similarly to [21], the

sequence {Θ(q)}NMC

q=Nbi+1 generated by the proposed sampler (i.e., after Nbi burn-in iterations) is used

to approximate the MMSE estimators of the different unknown parameters M, At, dMt and Xt by

replacing the expectations by empirical averages.

M̂MMSE ≃
1

NMC −Nbi

NMC∑

q=Nbi+1

M(q) (36)

ÂMMSE
t ≃

1

NMC −Nbi

NMC∑

q=Nbi+1

A
(q)
t (37)

d̂M
MMSE

t ≃
1

NMC −Nbi

NMC∑

q=Nbi+1

dM
(q)
t (38)

X̂MMSE
t ≃

1

NMC −Nbi

NMC∑

q=Nbi+1

X
(q)
t . (39)

This choice is justified by the fact that MAP estimators computed using MCMC algorithms are often

less accurate when the number of unknown parameters is relatively large [45]. Finally, the following

marginal maximum a posterior (mMAP) estimator is considered for the label maps

ẑmMAP
n,t = argmax

zn,t∈{0,1}
p
(
zn,t | yn,t,Θ\{zn,t}

)
. (40)

It is approximated by

ẑmMAP
n,t ≃





0, if ♯{q > Nbi : z
(q)
n,t = 0} ≤ NMC−Nbi

2

1, otherwise.
(41)

B. Sampling the abundances A
¯

The likelihood function (III-A) combined with the prior given in Section III-B1 leads to the

following conditional distribution for the abundances

an,t | yn,t,Θ\{an,t} ∼ NSR
(µ

(A)
n,t ,Λn,t) (42)

Λ−1
n,t =

1

σ2t
MT

tMt +
1

ε2n

(
[T 1

n,t 6= ∅] + [T 2
n,t 6= ∅]

)
IR (43)
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Algorithm 1: Proposed hybrid Gibbs sampler.

Data: Nbi, NMC, M(0), A
¯

(0), dM
¯

(0), X
¯

(0), σ2(0), Z(0), β(0), s2(0), Ψ2(0).

begin

for q = 1 to NMC do

Sample the endmembers M
(q), cf. §IV-C ;

Sample the variability terms dM
¯

(q), cf. §IV-D;

Sample the abundances A
¯

(q), cf. §IV-B ;

Sample the labels and the outliers (Z(q),X
¯

(q)), cf. §IV-E;

Sample the outlier variances s
2(q), cf. §IV-F;

Sample the noise variances σ2(q), cf. §IV-G;

Sample the variability variances Ψ
2(q), cf. §IV-H;

Sample the granularity parameters β(q), cf. §IV-I;

Result:
{

M
(q),dM

¯

(q),A
¯

(q),Z(q),X
¯

(q),σ2(q),Z(q),β(q), s2(q),

Ψ
2(q)

}NMC

q=1
.

Mt , M+ dMt (44)

µ
(A)
n,t = Λn,t

[
1

σ2t
MT

t (yn,t − xn,t)

+
1

ε2n

(
[T 1

n,t 6= ∅]an,τ1
n,t

+ [T 2
n,t 6= ∅]an,τ2

n,t

)] (45)

where NSR
(µ,Λ) denotes a Gaussian distribution truncated to the set SR and

T
2
n,t = {τ > t | zn,τ = 0} , τ2n,t = min

τ∈T 2
n,t

τ (46)

with the convention T 2
n,t = ∅ if t = T .

Samples distributed according to the above truncated multivariate Gaussian distributions can be

generated by a Gibbs sampler described in [46, Section IV.B.] [47], by an Hamiltonian Monte-Carlo

procedure [48], [49] or by the general method recently proposed in [50]. In this work, the Gibbs

sampler [46, Section IV.B.] has been adopted to sample the parameters of interest. Note that the

abundance vectors an,t can be sampled in parallel to accelerate the algorithm.

C. Sampling the endmembers M

Combining (III-A) and the endmember prior given in Section III-B3 leads to

mℓ,r | Y
¯
,Θ\{mℓ,r} ∼ N[bℓ,r,+∞)(µ

(M)
ℓ,r , κ2ℓ,r) (47)

bℓ,r = max
{
0,max

t
(−dmℓ,r,t)

}
(48)

µ
(M)
ℓ,r = κ2ℓ,r

∑

t

1

σ2t

[
ỹℓ,t − x̃ℓ,t − m̃l,\rA\r,t

− d̃mℓ,tAt

]
ãT
r,t

(49)
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κ2ℓ,r =

[∑

n,t

a2r,n,t

σ2t
+

1

ξ

]−1

(50)

where d̃mℓ,t is the ℓth row of dMt, m̃ℓ,\r is the ℓth row of M whose rth entry has been removed,

A\r,t denotes the matrix At without its rth row and ãr,t is the rth row of At. Samples distributed

according to the above truncated Gaussian distributions can be efficiently generated using the algo-

rithm described in [51]. When using a PCA as a preprocessing step (20), the projected endmembers

er, for r = 1, . . . , R have a truncated multivariate Gaussian distribution [42]

er | Y
¯
,Θ\{er} ∼ NEr

(µ(E)
r ,Λr) (51)

where Er, µ
(E)
r and Λr have been reported in Appendix A. Note that the rows of M (resp. of

the projected endmember matrix E) can be sampled in parallel to decrease the computational time

required by the algorithm.

D. Sampling the variability terms dM
¯

Similarly, the likelihood function (III-A) and the prior given in Section III-B4 lead to

dmℓ,r,t ∼ N[−mℓ,r,+∞)(µ
(dM)
ℓ,r,t , η

2
ℓ,r,t) (52)

with
1

η2ℓ,r,t
=

1

σ2t

∑

n

a2r,n,t +
1

ν

[
t = 1

]

+
1

ψ2
ℓ,r

(
1 +

[
1 < t < T

]) (53)

µ
(dM)
ℓ,r,t =

[
1

σ2t

(
ỹℓ,t − d̃mℓ,\r,tA\r,t − m̃ℓan,t − xℓ,n,t

)
ãT
r,t

+
1

ψ2
ℓ,r

(
[t < T ]dmℓ,r,(t+1) + [t > 1]dmℓ,r,(t−1)

)]
η2ℓ,r,t

(54)

where d̃mℓ,\r,t denotes the ℓth row of dMt whose rth element has been removed, m̃ℓ is the ℓth row

of M and A\r,t is the matrix At without its rth row. The rows of each variability matrix dMt can

be sampled in parallel to reduce the computational time of the sampler.

E. Sampling the label maps Z and the outliers X
¯

According to (III-A) and Section III-B2, the outliers admit the following group-sparsity promoting

conditional distributions

p(xn,t | yn,t,Θ\{zn,t,xn,t}) =

(1− wn,t)δ(xn,t) + wn,tNR
L
+
(µ

(X)
n,t , ϑ

2
t IL)

(55)
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which are mixtures of a Dirac mass at 0 and of truncated multivariate Gaussian distributions, where

wn,t =
w̃n,t

w̃n,t + (1− ωn,t)
, ϑ2t =

σ2t s
2
t

σ2t + s2t
(56)

w̃n,t =
ωn,t

(s2t )
L/2

(ϑ2t )
L/2 exp

(
1

2ϑ2t
‖µ

(X)
n,t ‖

2
2

)
(57)

µ
(X)
n,t =

s2t
σ2t + s2t

[
yn,t − (M+ dMt)an,t

]
. (58)

In practice, the labels zn,t are first sampled according to a Bernoulli distribution to select one of

the two models for xn,t, with probability P[zn,t = 1 | yn,t,Θ\{zn,t,xn,t}] = wn,t. Note that the labels

zn,t can be sampled in parallel by using a checkerboard scheme. In addition, the outliers xn,nt can

be sampled in parallel to decrease the computational time.

F. Sampling the outlier variances s2

According to Sections III-B2 and III-C, we can easily identify the conditional law of s2t for t =

1, . . . , T as the following inverse gamma distribution

s2t |Θ\{s2t} ∼

IG
(
as +

♯{n : zn,t = 1}L

2
, bs +

1

2
‖Xt‖

2
F

)
.

(59)

G. Sampling the noise variances σ2

Using Sections III-B5 and III-C, we obtain for t = 1, . . . , T

σ2t | Yt,Θ\{σ2
t } ∼IG

(
aσ +

LN

2
, bσ+

1

2
‖Yt − (M+ dMt)At −Xt‖

2
F

). (60)

H. Sampling the variability variances Ψ2

Similarly, Section III-B4 and III-C lead to

ψ2
ℓ,r | Θ\{ψ2

ℓ,r}
∼IG

(
aΨ +

T − 1

2
, bΨ+

1

2

T∑

t=2

(dmℓ,r,t − dmℓ,r,t−1)
2
)
.

(61)
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(a) Endmember 1 (b) Endmember 2 (c) Endmember 3

Fig. 2. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) used to

generate the synthetic mixtures with R = 3. Signatures corresponding to different time instants are represented in a single

figure to better appreciate the variability introduced in the data.

I. Sampling the granularity parameters βt

Provided square images are considered, the partition functions C(βt) have the closed-form expres-

sions [41], [52]

C̃(βt) =
1

2
log(2 sinhβt) +

1

2N

N∑

n=1

acosh∆n(βt) + βt

∆n(βt) = v(βt)− Cn, v(βt) =
cosh2 βt
sinhβt

C̃(βt) =
1

N
logC(βt), Cn = cos

(
2n− 1

2N
π

)
.

The exact partition function can then be used to sample the parameters βt using Metropolis-Hastings

steps. In this work, new values of the granularity parameters have been proposed by the following

Gaussian random walk

β∗t = β
(q)
t + εt, εt ∼ N

(
0, σ2β(t)

)
(62)

where the parameters σ2β(t) are adjusted during the burn-in iterations to yield acceptance rates in the

interval [0.4, 0.6].

J. Computational complexity

Assuming elementary arithmetic operations and scalar pseudo-random number generations are O(1)

operations, the overall computational complexity is dominated by matrix products needed to compute

the parameters related to the conditional distribution of the variability vectors. Since R≪ L≪ N and

T ≪ L, the per-iteration computational cost of the proposed algorithm is O(LR2NT ) per iteration.

As detailed in the preceding paragraphs, many parameters can be sampled in parallel to reduce the

computational time of the proposed algorithm. In comparison, the computational complexity of VCA

is O(R2N) [23] per image, and the per iteration complexity of the others algorithms for a single

image are respectively: O(N2) for FCLS [24], O(RN) for SISAL [25], O(LRN) for rLMM [26]

and O(R2(L+N)) for OU [15].
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V. EXPERIMENTS WITH SYNTHETIC DATA

The proposed method has been applied to an MTHS image composed of 10 acquisitions of size

50 × 50 with L = 413 bands. The first scenario deals with the appearance of a new material in

specific regions of a few images. To this end, 4 images out of the 10 have been corrupted by spatially

sparse outliers, corresponding to a new endmember extracted from a spectral library. Each image

of the sequence corresponds to a linear mixture of 3 endmembers affected by smooth time-varying

variability, and the synthetic abundances vary smoothly from one image to another.

First, so-called reference abundance maps corresponding to the first time instant have been generated

(e.g., for Fig. 4, we have taken the abundance maps obtained by VCA/FCLS on the widely studied

Moffett dataset [42]). Then, the abundance maps corresponding to the remaining time instants have

been generated by multiplying the reference maps with trigonometric functions to ensure a sufficiently

smooth temporal evolution. For the first dataset composed of R = 3 endmembers, the reference maps

associated with the first two endmembers have been respectively multiplied by cos
(

π
100 + t48π100

)
and

sin
(

π
100 + t48π100

)
, with t ∈ {1, . . . , T}. The temporal evolution of the last abundance map has finally

been obtained by leveraging the sum-to-one condition. With these abundance maps, the contribution

of a given endmember (assumed to punctually disappear) has been replaced at specific time instants

by a new endmember signature in pixels originally corresponding to its highest abundance coefficients

(e.g., above 0.8).

The mixtures have finally been corrupted by an additive white Gaussian noise to ensure a resulting

signal-to-noise ratio (SNR) between 25 and 30 dB. Similarly, two complementary scenarii involving

5 HS images, of size 100× 100, composed of 6 and 9 endmembers, have been considered to analyze

the performance of the method in the presence of a larger number of endmembers. Note that a larger

image size has been considered for these two datasets to reflect the fact that a larger number of

endmembers is expected to be observed in larger scenes. In practice, the two other datasets (i.e.,

composed of 6 and 9 endmembers) have been generated from the 100 × 100 abundance maps used

in [53]. In addition, the images of this experiment do not satisfy the pure pixel assumption to assess

the proposed method in challenging situations.

Controlled spectral variability has been introduced by using the product of reference endmembers

with randomly generated piecewise-affine functions as in [10], where different affine functions have

been generated for each endmember at each time instant. Typical instances of the signatures used in

this experiment are depicted in Fig. 2. The robustness of the proposed method to moderate spatial

variability, i.e., endmember variability occurring within single images, has also been evaluated. The

corresponding results can be found in Appendix E.
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TABLE I

FIXED PARAMETERS, AND INITIAL VALUES ASSOCIATED IN THE EXPERIMENTS TO PARAMETERS LATER INFERRED

FROM THE MODEL.

Synthetic data Real data

F
ix

ed
p

ar
am

et
er

s

ε2n 10−3 10−2

ξ 1 1

ν 10−3 10−5

as, aΨ, aσ 10−3 10−3

bs, bΨ, bσ 10−3 10−3

Nbi 350 450

NMC 400 500

In
it

ia
l

v
al

u
es σ2

t 10−4 10−4

s2t 5× 10−3 5× 10−3

ψ2
ℓ,r 10−3 10−2

βt 1.7 1.7

A. Compared methods

The results of the proposed algorithm have been compared to those of several unmixing methods

from the literature, some of which are specifically designed to unmix a single HS image. In the

following lines, the most relevant implementation details specific to each method are briefly recalled.

1) VCA/FCLS (no variability, single image): the endmembers are first extracted on each image

using the vertex component analysis (VCA) [23], which requires pure pixels to be present.

The abundances are then estimated for each pixel by solving a fully constrained least squares

problem (FCLS) using the alternating direction method of multipliers (ADMM) [24]. Note that

the estimates provided by the VCA algorithm vary from one run to another, given its stochastic

nature;

2) SISAL/FCLS (no variability, single image): the endmembers are extracted on each image by

the simplex identification via split augmented Lagrangian (SISAL) [25], and the abundances are

estimated for each pixel by FCLS. The tolerance for the stopping rule has been set to 10−3;

3) RLMM (no variability, single image): the unmixing method associated with the robust linear

mixing model (RLMM) proposed in [26] has been applied to each image of the series indepen-

dently. The algorithm has been initialized with SISAL/FCLS, and the regularization parameter

specific to this method is set as in [26];

4) OU: the endmembers are estimated using the online unmixing (OU) algorithm introduced in [15]

with endmembers initialized by the output of VCA applied to the first image of the sequence.
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The abundances are initialized by FCLS, and the variability matrices are initialized with all their

entries equal to 0. The other parameters are set to the same values as those given in [15, Table

I];

5) Proposed approach: the endmembers are initialized with VCA applied to the first image of the

sequence, within which the observed materials are well represented (i.e., with sufficiently high

abundance coefficients for each material). In this context the VCA algorithm, which requires pure

pixels to be present in the data, has been observed to yield relevant results for the initializa-

tion. However, other endmember extraction techniques might be used to initialize the proposed

algorithm if needed. The abundances are initialized by FCLS, and the variability matrices and

label maps are initialized with all their entries equal to 0 (i.e., the images are a priori assumed

to contain no outlier). The values chosen for the other parameters are summarized in Table I.

Further details on these values can be found in Appendix B.

Performance assessment has been conducted in terms of

(i) endmember estimation through the average spectral angle mapper (aSAM)

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT
rm̂r

‖mr‖2‖m̂r‖2

)
; (63)

(ii) abundance and variability estimation through the global mean square errors (GMSEs)

GMSE(A) =
1

TRN

T∑

t=1

‖At − Ât‖
2
F (64)

GMSE(dM) =
1

TLR

T∑

t=1

‖dMt − d̂Mt‖
2
F; (65)

(iii) quadratic reconstruction error (RE)

RE =
1

TLN

T∑

t=1

‖Yt − Ŷt‖
2
F (66)

where Ŷt is the matrix composed of the pixels reconstructed with the estimated parameters.

B. Results

The endmembers estimated by the proposed algorithm are compared to those of VCA/FCLS,

SISAL/FCLS, RLMM and OU in Fig. 3, whereas the corresponding abundance maps are displayed

in Fig. 4. Note that the abundance maps and the endmembers obtained for the mixtures of 6 and 9

endmembers are reported in Appendix D to ease the reading of this paper. The unmixing performance

of each method, reported in Table II, leads to the following conclusions.

• Endmember estimation: the proposed method shows an interesting robustness with respect to

spatially sparse outliers in the sense that the estimated signatures (Figs. 3m to 3o) are very close

to the corresponding ground truth (Fig. 2). In comparison, the shape of the endmembers recovered

by VCA, SISAL and RLMM and the variability extracted by OU are significantly affected by
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(a) VCA (b) VCA (c) VCA

(d) SISAL (e) SISAL (f) SISAL

(g) RLMM (h) RLMM (i) RLMM

(j) OU (k) OU (l) OU

(m) Proposed (n) Proposed (o) Proposed

Fig. 3. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 3. Each row of the figure corresponds to the endmembers

extracted for the 3 materials by each algorithm. Signatures corresponding to different time instants are represented on a

single figure to better appreciate the variability recovered from the data. The spectra represented in black in Figs. 3a, 3b,

3d, 3e and 3h correspond to signatures corrupted by outliers.

outliers, as exemplified in Figs. 3b, 3e, 3h and 3k respectively. These qualitative results are

confirmed by the quantitative performance measures of each method provided in Table II. Note

that the endmembers recovered by the SISAL and RLMM methods are very sensitive to the VCA

initialization, as illustrated by the similarity between the signatures estimated by these methods

(Figs. 3a to 3i).

• Abundance estimation: the abundance maps estimated by FCLS, RLMM and SISAL reflect the

high sensitivity of VCA (used to initialize SISAL and RLMM) to the presence of outliers (see

the figures delineated in red in Fig. 4). On the contrary, the abundances recovered by OU and

the proposed approach are much closer to the ground truth. These observations are confirmed by

the abundance estimation performance reported in Table II. The proposed abundance smoothness

prior appears to mitigate the errors induced by the presence of outliers as can be seen in Figs. 13
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Fig. 4. Abundance map of the first endmember recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 5. Outlier labels zt estimated for each image of the synthetic dataset with 3 endmembers (the different rows correspond

to the true labels, and the estimated labels) [0 in black, 1 in white].

and 14 in Appendix C. A more detailed version of Table II (Table V), along with complementary

figures illustrating the interest of the proposed abundance prior, can be found in Appendix C.

• Overall performance: the performance measures reported in Table II are globally favorable to

the proposed approach. It is important to mention that the price to pay with the good performance

of the proposed method is its computational complexity, which is common with MCMC methods.

As a complementary output, the proposed algorithm is able to recover the location of the outliers

within each image, as illustrated in Fig. 5. Up to a few false detections, the estimated labels are very

close to the ground truth. The label errors observed for t = 7, 8 and 9 partly result from the different

abundance constraints considered when an outlier is detected or not.
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TABLE II

SIMULATION RESULTS ON SYNTHETIC DATA (ASAM(M) IN (°), GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 ,

TIME IN (S)).

aSAM(M) GMSE(A) GMSE(dM) RE time

R
=

3

VCA/FCLS 6.07 2.32 / 3.91 1

SISAL/FCLS 5.07 1.71 / 2.28 2

RLMM 5.13 2.04 / 0.31 463

OU 1.90 0.42 3.22 2.61 98

Proposed 2.03 0.15 1.85 2.00 2530

R
=

6

VCA/FCLS 3.81 1.57 / 3.09 2

SISAL/FCLS 5.76 0.91 / 4.49 3

RLMM 2.73 1.26 / 0.29 1453

OU 2.74 0.38 3.70 1.13 420

Proposed 1.48 0.16 2.84 0.51 8691

R
=

9

VCA/FCLS 3.74 0.65 / 6.83 4

SISAL/FCLS 5.91 0.36 / 5.56 5

RLMM 2.48 0.54 / 0.31 1447

OU 6.08 0.47 2.19 0.89 1024

Proposed 2.23 0.15 8.38 0.82 17151

VI. EXPERIMENT WITH REAL DATA

A. Description of the dataset

We consider a real sequence of AVIRIS HS images acquired over the Lake Tahoe region (California,

United States of America) between 2014 and 20151. The scene of interest (100 × 100), composed

of a lake and a nearby field, has been unmixed with R = 3 endmembers based on the results of the

noise-whitened eigengap algorithm (NWEGA) [54] applied to each image of the series (see Table

III). This choice is further supported by results obtained from a previous analysis conducted on the

same dataset [55, Appendix E]. For R = 4 and 5, the signatures of water, soil and vegetation were

split into two or more components by the different algorithms, suggesting R = 3 is more appropriate

for this study. Note that prior studies led in [15] revealed that this dataset contains outliers (area

delineated in red in Fig. 6e). After removing the seemingly corrupted bands and the water absorption

bands, 173 out of the 224 spectral bands were finally exploited. The initial parameters used for the

proposed algorithm are given in Table I. The other methods have been run with the same parameters

as in Section V. Note that the VCA results reported in this section are representative of those obtained

over multiple runs (no significant differences have been observed from one run to another).

1The images from which the scene under study is extracted are freely available from the online AVIRIS flight locator

tool at http://aviris.jpl.nasa.gov/alt locator/.
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(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015 (f) 10/13/2015

Fig. 6. Scenes used in the experiment, given with their respective acquisition date. The area delineated in red in Fig. 6e

highlights a region known to contain outliers (this observation results from a previous analysis led on this dataset in [15]).

B. Results

In the absence of any ground truth, the performance of the unmixing methods is assessed in

terms of RE (Table IV) while taking into account the consistency of the estimated abundance maps

reported in Figs. 8, 9 and 10. More precisely, the abundances associated with the vegetation area are

expected to be very high for t = 1, 3, 5 (corresponding to Figs. 6a, 6c and 6e) where the vegetation

visually appears to be sufficiently irrigated (hence well represented). On the contrary, the abundance

coefficients are supposed to be much lower for t = 2, 4, 6 (corresponding to Figs. 6b, 6d and 6f),

where the vegetation is visually drier or almost absent. Concerning the presence of water in the

bottom left-hand corner of the images, the latent variables introduced in Section III-B2 are expected

to reflect the abrupt variations in the presence of water observed at t = 3, 4 and 5. These observations,

combined with the extracted signatures (Fig. 7) and the estimated abundances (Figs. 8 to 10) lead to

the following comments.

• Endmember estimation: the signature recovered for the soil by VCA, SISAL and RLMM at

time t = 5 shows an amplitude which is significantly greater than the amplitude of the signatures

extracted at the other time instants, and a shape incompatible with what can be expected based

on physical considerations (see the black signatures in Figs. 7a, 7d and 7g). This is a clear

indication that outliers are present in the corresponding image. A similar observation can be

made for the vegetation signature obtained by VCA, SISAL and RLMM at time t = 5. On the

contrary, the endmembers recovered by OU and the proposed approach are much more consistent

from this point of view.

• Abundance estimation: the estimated abundances globally reflect the previous comments made

on the extracted endmembers. Notably, the abundance coefficients estimated at t = 5 by VCA,

SISAL and RLMM (delineated in red in Figs. 8 to 10) are visually inconsistent with the temporal

evolution of the materials observed in the true color composition given in Fig. 6. More explicitly,

the soil is not supposed to be concentrated on a few pixels as suggested by the corresponding

abundance maps in Fig. 8. Similarly, the water is not supposed to be present in high proportions

in all the pixels of the image as indicated in Fig. 9. These results, in contradiction with Fig. 6,
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TABLE III

ENDMEMBER NUMBER R ESTIMATED BY NWEGA [54] ON EACH IMAGE OF THE REAL DATASET.

04/10/2014 06/02/2014 09/19/201 11/17/2014 04/29/2015 10/13/2015

NWEGA 3 3 3 4 3 4

TABLE IV

SIMULATION RESULTS ON REAL DATA (RE ×10−4).

RE time (s)

R
=

3
VCA/FCLS 45.05 1

SISAL/FCLS 1.65 2

rLMM 2.51 390

OU 2.50 508

Proposed 0.34 23608

suggest that outliers are present at t = 5. In addition, the abundance maps estimated at t = 4

and 6 by FCLS for the water and the vegetation (delineated in green in Figs. 8 and 9) suggest

that the water contribution has been split into two spectra. The corresponding signatures are

represented in green in Figs. 7a and 7c. On the contrary, the results reported for OU and the

proposed method are consistent with the expected evolution of water and vegetation over time

(abundance values close to 1 at time t = 1, 3, 5, lower values at time t = 2, 4, 6). Finally, the

vegetation abundance maps estimated by the proposed method globally presents a better contrast

than those obtained with OU (Fig. 10).

The previous comments, along with the lower reconstruction error reported in Table IV, suggest

that the proposed approach is robust to spatially sparse outliers while allowing smooth temporal

variations to be exploited. Indeed, the pixels corresponding to abrupt variations of the water signature

have been properly detected. Furthermore, the outliers previously detected in this dataset [15] for

t = 5 (highlighted in red in Fig. 6e) are well captured by the latent variables Z (see Fig. 11). In

addition, the spatial distribution of the estimated outlier labels (Fig. 11) is in agreement with the

results of the RLMM (in terms of the spatial distribution of the outlier energy) and with the non-

linearity detector [56] applied to each image of the sequence with the SISAL-estimated endmembers

(see Fig. 12). Concentrated on regions where non-linear effects can be reasonably expected, the active

latent variables Z tend to capture the spatial distribution of the non-linearities possibly occurring in

the observed scene.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a Bayesian model accounting for both smooth and abrupt variations possibly

occurring in multitemporal hyperspectral images. The adopted model was specifically designed to
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(a) Soil (VCA) (b) Water (VCA) (c) Veg. (VCA)

(d) Soil (SISAL) (e) Water (SISAL) (f) Veg. (SISAL)

(g) Soil (RLMM) (h) Water (RLMM) (i) Veg. (RLMM)

(j) Soil (OU) (k) Water (OU) (l) Veg. (OU)

(m) Soil (Prop.) (n) Water (Prop.) (o) Veg. (Prop.)

Fig. 7. Endmembers (mr , red lines) and their variants affected by variability (mr +dmr,t, blue dotted lines) recovered by

the different methods from the real dataset depicted in Fig. 6. The spectral gaps in the recovered signatures correspond to

the low SNR bands which have been removed prior to the unmixing procedure. Signatures corresponding to different time

instants are represented in a single figure to better appreciate the variability recovered from the data. The spectra represented

in black correspond to signatures corrupted by outliers, while those given in green represent endmembers which have been

split into several components by the associated estimation procedure.

handle datasets in which mostly the same materials were expected to be observed at different

time instants, thus allowing information redundancy to be exploited. An MCMC algorithm was

derived to solve the resulting unmixing problem in order to precisely assess the performance of the

proposed approach on multitemporal HS images of moderate size (i.e., moderate spatial and temporal

dimensions). This algorithm was used to sample the posterior of the proposed hierarchical Bayesian

model and to use the generated samples to build estimators of the unknown model parameters.

Given its computational cost, the proposed approach is not intended to be applied to large datasets,

for which different unmixing methods can provide a rougher analysis at a smaller computational

cost. The proposed approach is rather meant to be used as a complementary tool to carry out

an in-depth analysis of scenes of moderate size. Future research perspectives include the use of
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Fig. 8. Soil abundance map recovered by the different methods (in each row) at each time instant (given in column) for the

experiment on the real dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM, OU, and the proposed

method]. The images delineated in red suggest that some of the methods are particularly sensitive to the presence of outliers.

relaxation methods to the Ising field to tackle similar problems with online optimization techniques,

and the development of distributed unmixing procedures to efficiently unmix larger datasets. Designing

unmixing methods scaling with the problem dimension while simultaneously accounting for temporal

and spatial endmember variability is another interesting prospect.

APPENDIX A

SAMPLING THE PROJECTED ENDMEMBERS E

When using a PCA as a preprocessing step, the projected endmembers er, for r = 1, . . . , R, are

distributed according to the following truncated Gaussian distributions

er | Y
¯
,Θ\{er} ∼ NEr

(µ(E)
r ,Λr) (67)

with Er = [c1,r, d1,r]× . . .× [cK,r, dK,r], and for k = 1, . . . ,K

ck,r = max
ℓ∈U+

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r + bℓ,r

uℓ,k

)

dk,r = min
ℓ∈U−

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r + bℓ,r

uℓ,k

)

bℓ,r = min
{
0,min

t
(dmℓ,r,t)

}

Λ−1
r =

[
1

ξ
+
∑

n,t

a2r,n,t

σ2t

]
IR−1 (68)

µ(E)
r = ΛrU

T

[∑

t,n

1

σ2t

(
yn,t − xn,t − dMtan,t

−y̌ar,n,t −
∑

j 6=r

aj,n,tmj

)
ar,n,t

]
.
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Fig. 9. Water abundance map recovered by the different methods (in each row) at each time instant (given in column)

for the experiment on the real dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM, OU, and the

proposed method]. On the one hand, the images delineated in red suggest that some of the methods are particularly sensitive

to the presence of outliers. On the other hand, the images delineated in green represent the abundance maps associated with

signatures which have been split into two components by the corresponding unmixing procedures.
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Fig. 10. Vegetation abundance map recovered by the different methods (in each row) at each time instant (given in column)

for the experiment on the real dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM, OU, and the

proposed method]. The images delineated in red suggest that some of the methods are particularly sensitive to the presence

of outliers.
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Fig. 11. mMAP estimates of the label maps recovered by the proposed approach, displayed at each time instant (the

different rows correspond to: the estimated label map (pixels detected as outliers appear in white), the outlier energy map

re-scaled in the interval [0, 1] obtained by the proposed method, and by RLMM).

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Fig. 12. Non-linearity maps estimated by the detector [56] applied to each image with the SISAL-extracted endmembers,

with a probability of false alarm of 10−3 (pixels detected as non-linearities appear in white).
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APPENDIX B

DETAILS ON THE VALUES CHOSEN IN TABLE I

The initial values chosen for the parameters in Table I are based on the following considerations.

(a) The initial noise variance σ2t reflects a typical order of magnitude of the SNR (HS images are

typically known to have an SNR around 30 dB).

(b) The initial outlier variance s2t has been taken an order of magnitude greater than σ2t to ensure

outlier contributions that can be captured by the algorithm.

(c) The initial variability variance ψ2
ℓ,r, which controls the temporal smoothness of the variability

term, can be a priori chosen of the same order of magnitude as s2t .

(d) The granularity parameters βt were initially selected to reflect the practitioner’s prior knowledge

on the smoothness of the outlier spatial support. A value between 1 and 2 (i.e., above the phase-

transition temperature of the Ising MRF [57]) is particularly appropriate for natural scenes, in

which the observed materials exhibit a relatively smooth spatial distribution.

Similarly, the values of the fixed parameters given in Table I are selected as follows.

(a) ε2n, which controls the confidence given to the abundance smoothness prior, has been fixed by

cross-validation (i.e., based on the estimation results obtained by multiple runs for different

values);

(b) Since no specific prior knowledge is available on the endmembers, the endmember variance

ξ is chosen sufficiently large (typically equal to 1) to ensure the endmember prior is weakly

informative;

(c) ν, which controls the energy of the variability captured by the algorithm, has been set by cross

validation;

(d) Given the absence of specific prior knowledge on the outlier variances s2t , the variability variances

ψ2
ℓ,r and the noise variances σ2t , the hyperparameters as, aΨ, aσ, bs, bΨ, bσ are set to a small value

(typically 10−3) to ensure the chosen conjugate inverse-gamma priors are uninformative [21];

(e) The number of Monte-Carlo and burn-in iterations, respectively denoted by NMC and Nbi, are

set according to a classical convergence diagnosis, namely the potential scale reduction factor

(PSRF) [58].
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APPENDIX C

COMPLEMENTARY ILLUSTRATION OF THE PROPOSED ABUNDANCE PRIOR

In this section, two complementary figures (Figs. 13 and 14) illustrate the interest of considering the

proposed abundance prior whenever outliers are observed in the MTHS image for synthetic dataset

composed of R = 3 endmembers. These illustrations are further substantiated by the estimation

metrics detailed for each time instant in Table V.

t
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Fig. 13. Evolution of the abundance corresponding to a pixel in which outliers are observed at several time instants

(indicated by vertical dotted lines). The abundance coefficient estimated at each time instant by the different unmixing

strategies are reported in different colors. The proposed method proves to be particularly appropriate to mitigate the errors

induced by the presence of outliers.
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Fig. 14. Evolution of the abundance corresponding to a pixel for which no outliers are observed over time. The abundance

coefficient estimated at each time instant by the different unmixing strategies are reported in different colors.

November 18, 2017 DRAFT



3
0

TABLE V

DETAILED TABLE OF RESULTS OBTAINED ON THE SYNTHETIC DATA COMPOSED OF R = 3 ENDMEMBERS. THE CRITERION ASAM(Mt) DENOTES THE AVERAGE SPECTRAL ANGLE

MAPPER BETWEEN THE GROUND TRUTH PERTURBED ENDMEMBERS Mt = M+ dMt AND THE ESTIMATED PERTURBED ENDMEMBERS AT TIME INSTANT t. THE TIME INSTANTS

REPRESENTED WITH ∗ DENOTE IMAGES CONTAINING OUTLIERS.

t 1 2∗ 3 4 5∗ 6∗ 7 8 9 10∗

GMSE(At)

VCA 1.835e-03 3.764e-02 2.379e-03 1.644e-03 5.942e-02 6.598e-02 1.823e-03 1.963e-03 1.228e-03 5.849e-02

SISAL 1.088e-04 3.631e-02 4.532e-05 3.667e-04 3.973e-02 4.002e-02 1.304e-04 1.136e-04 1.708e-04 4.242e-02

RLMM 1.689e-03 3.788e-02 2.092e-03 1.526e-03 4.924e-02 5.442e-02 1.716e-03 1.859e-03 1.188e-03 5.242e-02

OU 9.990e-04 1.438e-02 9.873e-04 9.541e-04 9.571e-03 8.797e-03 8.247e-04 8.437e-04 9.699e-04 3.633e-03

MCMC 4.826e-04 2.715e-03 4.899e-04 5.583e-04 1.880e-03 1.780e-03 9.692e-04 1.201e-03 1.716e-03 3.104e-03

aSAM(Mt)

VCA 2.095e+00 1.840e+01 3.085e+00 2.560e+00 1.055e+01 1.100e+01 2.622e+00 2.706e+00 2.252e+00 1.035e+01

SISAL 4.842e-01 2.672e+01 2.669e-01 7.102e-01 1.055e+01 1.004e+01 5.483e-01 5.191e-01 5.956e-01 9.231e+00

RLMM 1.502e+00 2.134e+01 1.647e+00 1.401e+00 8.894e+00 9.427e+00 1.782e+00 1.665e+00 1.520e+00 8.874e+00

OU 1.231e+00 4.402e+00 1.317e+00 1.346e+00 3.197e+00 2.984e+00 1.312e+00 1.292e+00 1.353e+00 1.785e+00

MCMC 1.522e+00 1.461e+00 8.965e-01 6.649e-01 7.913e-01 8.633e-01 1.055e+00 1.226e+00 1.679e+00 2.797e+00

RE

VCA 1.308e-04 5.450e-04 2.119e-04 1.942e-04 6.402e-04 5.543e-04 3.400e-04 2.817e-04 3.416e-04 6.675e-04

SISAL 1.252e-04 2.438e-04 1.621e-04 1.635e-04 2.714e-04 1.824e-04 3.323e-04 2.110e-04 3.343e-04 2.500e-04

RLMM 1.844e-04 7.596e-04 2.593e-04 2.608e-04 6.193e-04 4.322e-04 6.139e-04 3.579e-04 6.193e-04 4.894e-04

OU 1.254e-04 4.108e-04 1.624e-04 1.637e-04 3.367e-04 2.458e-04 3.325e-04 2.113e-04 3.346e-04 2.843e-04

MCMC 1.252e-04 1.238e-04 1.621e-04 1.635e-04 2.060e-04 1.307e-04 3.314e-04 2.109e-04 3.319e-04 2.102e-04

aSAM(Yt)

VCA 1.904e+00 3.025e+00 2.387e+00 2.284e+00 3.844e+00 3.480e+00 2.954e+00 2.605e+00 2.930e+00 3.523e+00

SISAL 1.872e+00 2.351e+00 2.099e+00 2.093e+00 2.557e+00 2.059e+00 2.929e+00 2.321e+00 2.904e+00 2.392e+00

RLMM 1.964e+00 3.422e+00 2.231e+00 2.220e+00 3.040e+00 2.469e+00 3.170e+00 2.480e+00 3.150e+00 2.650e+00

OU 1.873e+00 2.527e+00 2.100e+00 2.095e+00 2.603e+00 2.084e+00 2.930e+00 2.322e+00 2.905e+00 2.414e+00

MCMC 1.872e+00 1.785e+00 2.099e+00 2.093e+00 2.303e+00 1.828e+00 2.925e+00 2.320e+00 2.892e+00 2.282e+00
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APPENDIX D

COMPLEMENTARY ILLUSTRATIONS ASSOCIATED WITH THE EXPERIMENTS

A. Experiments on synthetic data (R = 3)

The abundances associated with the two remaining endmembers are given in Figs. 15 and 16.
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Fig. 15. Abundance map of the second endmember recovered by the different methods (in each row) at each time instant

(given in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS,

SISAL/FCLS, RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly

sensitive to the presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 16. Abundance map of the third endmember recovered by the different methods (in each row) at each time instant

(given in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS,

SISAL/FCLS, RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly

sensitive to the presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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B. Experiments on synthetic data (R = 6)

The abundances, endmembers and the estimated labels are depicted in Figs. 17 to 25 for the datasets

composed of R = 6. Note that the synthetic abundance maps involved in these experiments are those

used in [53].

M
C

M
C

 

 

0

0.5

1

O
U

 

 

0

0.5

1

R
L
M

M

 

 

0

0.5

1

S
IS

A
L

 

 

0

0.5

1

V
C

A

 

 

0

0.5

1

t = 1

T
R

U
E

t = 2 t = 3 t = 4 t = 5

 

 

0

0.5

1

Fig. 17. Abundance map of the endmember 1 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 18. Abundance map of the endmember 2 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 19. Abundance map of the endmember 3 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 20. Abundance map of the endmember 4 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 21. Abundance map of the endmember 5 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 22. Abundance map of the endmember 6 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 23. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 6. Signatures corresponding to different time instants are

represented on a single figure to better appreciate the variability recovered from the data. The spectra represented in black

correspond to signatures corrupted by outliers.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 24. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 6. Signatures corresponding to different time instants are

represented on a single figure to better appreciate the variability recovered from the data. The spectra represented in black

correspond to signatures corrupted by outliers.
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Fig. 25. Outlier labels zt estimated for each image of the synthetic dataset with R = 6 (the different rows correspond to

the true labels, and the estimated labels) [0 in black, 1 in white].
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C. Experiments on synthetic data (R = 9)

The abundances, endmembers and the estimated labels are depicted in Figs. 26 to 38 for the datasets

composed of R = 9. Note that the synthetic abundance maps involved in these experiments are those

used in [53].
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Fig. 26. Abundance map of the endmember 1 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 27. Abundance map of the endmember 2 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 28. Abundance map of the endmember 3 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 29. Abundance map of the endmember 4 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 30. Abundance map of the endmember 5 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 31. Abundance map of the endmember 6 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 32. Abundance map of the endmember 7 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 33. Abundance map of the endmember 8 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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Fig. 34. Abundance map of the endmember 9 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 6 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

RLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers, and the time instants represented with ∗ denote images containing outliers.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 35. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 9. Signatures corresponding to different time instants are

represented on a single figure to better appreciate the variability recovered from the data.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 36. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 9. Signatures corresponding to different time instants are

represented on a single figure to better appreciate the variability recovered from the data.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 37. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic mixtures with R = 9. Signatures corresponding to different time instants are

represented on a single figure to better appreciate the variability recovered from the data.

November 18, 2017 DRAFT



54

L
a

b
e

ls

t = 1

G
ro

u
n

d
 t

ru
th

t = 2 t = 3 t = 4 t = 5

Fig. 38. Outlier labels zt estimated for each image of the synthetic dataset with R = 9 (the different rows correspond to

the true labels, and the estimated labels) [0 in black, 1 in white].
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APPENDIX E

ROBUSTNESS OF THE PROPOSED APPROACH TO MODERATE SPATIAL VARIABILITY

We have generated two synthetic datasets in which the bottom left-hand size of the images are

affected by moderate spatial variability (i.e., variability within each image of the sequence) and

outliers (see Fig. 39). An example of the spatial variability considered in this dataset is reported

in Fig. 40. The data have been further corrupted by an additive white Gaussian noise to ensure a

resulting SNR between 30 and 35 dB. In the following paragraphs, only the results obtained for the

mixtures composed of R = 3 endmembers are commented (Table VI and Figs. 41 to 44). Similar

comments can be made for the case R = 9.

• Endmember estimation: the proposed method shows an interesting robustness with respect to

spatially sparse outliers and moderate spatial variability, in the sense that the estimated signatures

(Figs. 44p to 44r) are very close to the corresponding ground truth (Fig. 40). In comparison, the

shape of the endmembers recovered by VCA, SISAL and RLMM and the variability extracted

by OU are significantly affected by outliers, as exemplified in Figs. 44e, 44h, 44k and 44n

respectively. These qualitative results are confirmed by the quantitative performance measures

reported in Table VI.

• Abundance estimation: the abundance maps estimated by FCLS, RLMM and SISAL reflect

the high sensitivity of VCA (used to initialize SISAL and RLMM) to the presence of outliers

(see the figures delineated in red in Figs. 41 to 43). On the contrary, the abundances recovered

by OU and the proposed approach are much closer to the ground truth. These observations are

confirmed by the abundance estimation performance reported in Table VI.

• Overall performance: the performance measures reported in Table VI are globally favorable to

the proposed approach. It is important to mention that the price to pay with the good performance

of the proposed method is its computational complexity, which is common with MCMC methods.

We finally observed that spatial variability has an influence on the outlier maps estimated by the

algorithm (Fig. 39): as naturally expected, more pixels tend to be detected as corrupted by outliers.

Indeed, for a given time instant t, spatial variability induces local deviations from the linear model

(M+ dMt)At, which are then captured as outliers or noise by the proposed model. Note however

that this phenomenon does not significantly affect the recovered abundances and endmembers, as

illustrated in Figs. 41-43 and 44.
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TABLE VI

SIMULATION RESULTS ON SYNTHETIC DATA AFFECTED BY MODERATE SPATIAL VARIABILITY (ASAM(M) IN (°),

GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 , TIME IN (S)).

aSAM(M) GMSE(A) GMSE(dM) RE time

R
=

3

VCA/FCLS 4.83 2.10 / 2.39 1

SISAL/FCLS 4.71 1.55 / 0.82 2

rLMM 3.92 1.68 / 0.22 655

OU 1.46 0.35 3.22 0.95 113

Proposed (MCMC) 1.31 0.09 0.33 0.65 2425

R
=

9

VCA/FCLS 2.93 3.12 ×10−1 / 20.1 5

SISAL/FCLS 5.89 4.67 ×10−1 / 0.87 6

rLMM 2.74 2.83 ×10−1 / 0.38 1498

OU 2.48 1.63 ×10−1 2.81 1.20 379

Proposed (MCMC) 1.60 2.00 ×10−1 5.65 0.84 8926
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Fig. 39. mMAP estimates of the label maps recovered by the proposed approach, displayed at each time instant (the

different rows correspond to the true label map where outliers appear in white, the estimated map and the areas where

spatial variability is present). The influence of spatial variability can be seen on the outlier map estimated for the first image.

(a) True endmember 1 (b) True endmember 2 (c) True endmember 3

Fig. 40. True endmembers (in red) and spatial variability (in cyan) used for the synthetic dataset with R = 3.
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Fig. 41. Abundance map of the endmember 1 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

rLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers.
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Fig. 42. Abundance map of the endmember 2 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

rLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers.
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Fig. 43. Abundance map of the endmember 3 recovered by the different methods (in each row) at each time instant (given

in column) for the experiment with R = 3 [the different rows correspond to the true abundances, VCA/FCLS, SISAL/FCLS,

rLMM, OU and the proposed method]. The images delineated in red show that several methods are highly sensitive to the

presence of outliers.
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(a) True endmembers (b) True endmembers (c) True endmembers

(d) VCA (e) VCA (f) VCA

(g) SISAL (h) SISAL (i) SISAL

(j) RLMM (k) RLMM (l) RLMM

(m) OU (n) OU (o) OU

(p) MCMC (q) MCMC (r) MCMC

Fig. 44. Endmembers (mr , red lines) and their variants affected by variability (mr + dmr,t, blue dotted lines) recovered

by the different methods from the synthetic dataset corrupted by spatial variability (R = 3). Signatures corresponding to

different time instants are represented on a single figure to better appreciate the variability recovered from the data. The

spectra represented in black correspond to signatures significantly affected by outliers.
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