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Abstract—Wideband radio-interferometric (RI) imaging con-
sists in estimating images of the sky across a whole frequency
band from incomplete Fourier data. Powerful prior information is
needed to regularize the inverse imaging problem. At the extreme
resolution and dynamic range of interest to modern telescopes,
image cubes will far exceed Terabyte sizes, with data volumes
orders of magnitude larger, making image estimation a very chal-
lenging task. The computational cost and memory requirements
of corresponding iterative image recovery algorithms are extreme
and call for high parallelism. A data-splitting strategy was recently
introduced to parallelize computations over data blocks within an
advanced primal-dual convex optimization algorithm. Building
on the same algorithm, we propose an image faceting approach
that consists in splitting the image cube into 3D overlapping facets
with their own prior, reducing the computational bottleneck
from full image to facet size. Simulation results suggest our
prior provides similar if not superior reconstruction quality to
the corresponding state-of-the-art non-faceted approach, with
facet parallelization offering acceleration and therefore increased
potential of scalability to large data and image sizes.

Index Terms—Wideband radio-interferometric imaging, facet-
based prior, preconditioned primal-dual algorithm.

I. INTRODUCTION

The advent of modern radio interferometers [1]–[3] will

enable wide-field astronomical surveys with unprecedented

resolution and sensitivity over thousands of spectral channels

(≈ 1014 pixels for the Square Kilometer Array (SKA) [3]).

Exploiting the sheer amount of data produced by these instru-

ments while leveraging sophisticated processing techniques

is a technical challenge. Wideband radio-interferometric (RI)

imaging consists in recovering an image of radio sources

in many spectral channels to study the distinctive spectral

signature of physical sources in the sky, e.g., radio galaxies [4],

fast radio bursts [5] and radio pulsars [6]. In this context,

several algorithms have been proposed in the literature to

jointly exploit the spatial and spectral information.

CLEAN-based algorithms [7]–[9] progressively reconstruct

the wideband model cube by locally removing the contribution

of the so-called dirty beam from the back-projected data.

Albeit efficient, these algorithms require many parameters to

be manually tuned while providing limited imaging quality

[10], [11]. Another class of methods is based on Bayesian

statistical inference techniques [12], which assume that the

sky brightness follows log-normal statistics. In practice, the
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high computational cost of these methods prevents them from

scaling to large data and image sizes. Over the past few years,

scalable optimization-driven imaging approaches have been

proposed in the compressed sensing framework [13]–[16]. The

single-channel SARA approach [11] has shown the efficiency

of using an averaged sparsity prior for RI imaging [11]. It can

be applied to each channel separately in a wideband setting,

but does not capture the spectral correlations inherent to the

data. To address this shortcoming, HyperSARA [14] includes a

low-rankness and a joint average sparsity prior, to respectively

promote higher resolution and sensitivity images when com-

pared to state-of-the-art imaging techniques [14]. However,

this approach entails memory and computing requirements

scaling with the size of the full image cube, precluding its use

to reconstruct large images. Although the main computational

bottleneck induced by the number of measurements has been

tackled in [17], another one arises when reconstructing large

wideband images. To address this issue, a wideband, wide-field

calibration and faceted imaging approach based on CLEAN,

namely DDFacet, has been proposed in [18]. This method has

been primarily developed for calibration purposes, introducing

a piece-wise constant calibration model based on image facets.

The facets considered in this framework reflect the underlying

flux distribution, and are thus not tailored to reconstruct

emissions extending across multiple facets. In addition, this

method does not benefit from any convergence guarantee.

In this work, we design a highly scalable wideband imaging

approach building on HyperSARA, relying on a flux-agnostic

facet-based prior promoting local spectral correlations. We

solve the resulting convex optimization problem with a scal-

able iterative preconditioned primal-dual (PD) algorithm. This

algorithm comes with convergence guarantees and allows all

the functions to be handled in parallel without resorting to

sub-iterations or costly operator inversions [19]. We show

through simulations on realistic synthetic data that the pro-

posed method performs well on extended sources, indepen-

dently of the choice of the facet size. The article is organized as

follows. Section II introduces the problem, while the proposed

approach is described in Section III. Simulation results are

reported in Section IV. Section V concludes this work and

outlines future research perspectives.

II. PROBLEM STATEMENT

A radio interferometer acquires visibilities resulting from

the mutual coherence of signals received by antenna pairs.

The visibilities are 2D Fourier coefficients of the sky image,
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Fig. 1: Data blocking strategy (left panel) and 3D facets (right panel)
considered in this work. A facet (red lines) is defined as an extended
version of a tile, resulting from a decomposition of the image into
non-overlapping regions (dashed red lines). Each facets overlaps with
its left and top neighbours by dx and dy pixels respectively.

probed at non-uniformly spaced spatial frequencies depending

on the observation wavelength and the configuration of the

instrument. Due to the limited number of antennas, the sam-

pling pattern, referred to as the uv-coverage, does not cover

the entire Fourier space. Estimating the wideband sky image

X = (xl)1≤l≤L ∈ R
N×L from incomplete, degraded mea-

surements is thus an ill-posed inverse problem. The acquisition

process in the frequency channel l can be modeled as

yl = Φlxl + nl, with Φl = GlFZ (1)

where yl ∈ C
M are the visibilities acquired in the channel

l ∈ {1, . . . , L}, xl ∈ R
N is the corresponding image, and

nl ∈ C
M is a realization of a complex Gaussian random

vector accounting for both instrumental noise and errors due to

imperfection of the calibration process. The measurement op-

erator Φl is composed of a zero-padding and scaling operator

Z ∈ R
K×N , the Fourier transform F ∈ C

K×K and an interpo-

lation matrix Gl ∈ C
M×N . Each row of Gl contains compact

support kernels representing both the interpolation kernels

involved in the non-uniform fast Fourier transform [20] and

calibration effects [21]. The main computational bottleneck

induced by the large number of measurements is addressed

by decomposing the visibility vectors yl into B blocks of

data {yb,l}
B
b=1, leading to per-block measurement operators

Φb,l [17]. Different blocking strategies can be adopted, e.g.,

based on a spatial tessellation of the uv-space to obtain

well-balanced sets of visibilities [17], or on a per channel

decomposition of the data into groups of snapshots [22] (see

Fig. 1). In this context, all blocks can be handled in parallel

by advanced algorithmic structures, such as the PD algorithm.

The dimension of the wideband image to be formed from the

data induces a second computational bottleneck, specifically

addressed by the faceted prior introduced in the next section.

III. PROPOSED APPROACH

A. Minimization problem

Wideband RI imaging can be formulated as the problem

minimize
X=(xl)

L
l=1∈R

N×L
+

L∑

l=1

B∑

b=1

ιB(yb,l,εb,l)

(
Φb,lxl

)
+ r(X) (2)

where the indices (b, l) ∈ {1, . . . , B} × {1, . . . , L} refer to a

data block b in the channel l, and B(yb,l, εb,l) is the ℓ2-norm

ball centred in yb,l, of radius εb,l > 0. The indicator functions

S̃1X, P̃1

S1X, Υ̃1

Facet node 1

S̃QX, P̃Q

SQX, Υ̃Q

Facet node Q

y1,1, ṽ1,1

Data node (1, 1)

yB,L, ṽB,L

Data node (B, L)

Fig. 2: Data nodes (red group) and facet nodes (in blue) in the
implementation of Algorithm 1, given with the main variables they
are responsible of. Black (respectively coloured) arrows represent
communications between (respectively within) the two groups.

ιB(yb,l,εb,l) ensure the consistency of the modeled data with the

measurements1, while the non-negativity constraint enforces

the physical consistency of the wideband image. The function

r encodes additional a priori knowledge on the structure of the

image to be estimated, depending on the approach considered.

SARA prior [11]: This single-channel approach considers

r(X) = µ‖Ψ†X‖1,1,ω , where µ > 0, Ψ† ∈ R
R×N

represents the SARA dictionary (i.e. concatenation of the first

8 Daubechies wavelets and the Dirac basis) [11], and ‖·‖1,1,ω
is a weighted ℓ1,1 norm with weights ω ∈ (R∗+)

R
. This prior is

extremely parallelizable with respect to the number of spectral

channels, but gives a sub-optimal reconstruction quality due

to the absence of spectral correlations [14].

HyperSARA prior [14]: This prior is defined as

r(X) = ‖X‖∗,ω + µ‖Ψ†X‖2,1,ω , where ‖·‖∗,ω denotes

a weighted nuclear norm with weights ω ∈ (R∗+)
J

(J =
min(N,L)), and ‖·‖2,1,ω is a weighted ℓ2,1 norm with weights

ω ∈ (R∗+)
R

. This approach was shown to give a significantly

better reconstruction quality than both SARA and CLEAN-

based methods [14]. In practice, the above prior induces

memory and computing requirements scaling directly with the

size of the full wideband image, which represents a significant

bottleneck for very large image cubes. Faceting thus stands out

as an efficient technique to tackle this issue, while leading to

additional degrees of parallelism.

Proposed faceted prior: We propose to decompose the

image into Q ∈ N
∗ overlapping facets to reduce the com-

puting and storage requirements induced by the dimension

of the image cube, and thus consider a prior adapted to this

decomposition. On the one hand, we observe that the full-

size wavelet transforms contained in Ψ† can be decomposed

into a collection of facet-based operators Ψ†q to implement an

exact but faceted version of Ψ† [23, Chapter 4]. On the other

hand, we introduce a tessellated nuclear norm to obtain a more

tractable alternative to the HyperSARA prior, leading to

r(X) =

Q∑

q=1

‖WqS̃qX‖∗,ωq
+ µq‖Ψ

†
qSqX‖2,1,ωq (3)

where, for every q ∈ {1, . . . , Q}, µq > 0, and both S̃q and Sq

yield rectangular overlapping facets. These operators differ in

the size of the overlap, taken as an adjustable parameter for S̃q ,

and prescribed by [23] for Sq (see Fig. 1). Diagonal weighting

1Let C be a closed convex subset of CN . The function ιC denotes the
indicator function of C, i.e., ιC(z) = +∞ if z ∈ C, 0 otherwise.



Algorithm 1: PD algorithm to solve (3).

Data: {yb,l}b,l
Input: X(0),

{
P(0)

q

}
q

,
{
Υ(0)

q

}
q

,
{
v
(0)
b,l

}
b,l

Parameters: {Ub,l}b,l, {εb,l}b,l, {µq}q , τ , ζ, η, ν

1 k ← 0, ξ = +∞;

2 X̌(0) = X(0);

3 while ξ > 10−5 do

// Broadcast auxiliary variables

4 for q = 1 to Q do

5 X̃(k)
q = S̃qX̌

(k), X̌(k)
q = SqX̌

(k);

6 for l = 1 to L do

7 z
(k)
l = FZx̌

(k)
l ; // Fourier transforms

8 for b = 1 to B do

9 z
(k)
b,l = Mb,lz

(k)
l ; // broadcast to data nodes

// Update low-rankness variables [facet nodes]

10 for q = 1 to Q do

11 P(k+1)
q =

(
I− prox‖·‖∗,ωq /ζ

)(
P(k)

q + WqX̃
(k)
q

)
;

12 P̃(k+1)
q = W†

qP
(k+1);

// Update joint-sparsity variables [facet nodes]

13 for q = 1 to Q do

14 Υ(k+1)
q =

(
I− proxµq‖·‖2,1,ωq

/ν

)(
Υ(k)

q + Ψ†
qX̌

(k)
q

)
;

15 Υ̃(k+1)
q = ΨqΥ

(k+1)
q ;

// Update data fidelity variables [data nodes]

16 for (b, l) = (1, 1) to (B, L) do

17 v
(k+1)
b,l =

Ub,l

(
I− prox

Ub,l
ιB(yb,l,εb,l)

)(
U

−1
b,l v

(k)
b,l + Gb,lz

(k)
b,l

)
;

18 ṽ
(k+1)
b,l = G

†
b,lv

(k+1)
b,l ;

// Inter node communications

19 Γ
(k)

=

Q∑

q=1

(
ζS̃

†
qP̃

(k+1)
q + νS

†
qΥ̃

(k+1)
q

)
+ ηZ

†
F

†
∑

b,l

ṽ
(k+1)
b,l e

†
l ;

// Update image [facet nodes]

20 X(k+1) = proxι
R
N×L
+

(
X(k) − τΓ(k)

)
;

21 X̌(k) = 2X(k+1) −X(k) ; // communicate facet borders

22 ξ = ‖X(k+1) −X(k)‖F/‖X
(k)‖F;

23 k ← k + 1;

Result: X(k),
{
P(k)

q

}
q

,
{
Υ(k)

q

}
q

,
{
v
(k)
b,l

}
b,l

matrices {Wq}
Q
q=1 correct for the fact that pixels within

overlapping regions appear multiple times in the problem (2)-

(3). In practice, Wq ensures that each pixel in the facet q is

divided by the total number of facets it is involved in.

B. A primal-dual imaging algorithm

An iterative PD algorithm has been advocated for wideband

imaging in [14] due to its efficiency in addressing each

non-smooth function in (2) in parallel through its proximity

operator2, avoiding sub-iterations or operator inversions [24],

[25]. We thus propose to solve problem (2), for r defined

in (3), with the preconditioned PD algorithm described in

Algorithm 1. This method is a scalable extension of Hyper-

SARA where the variables associated with each data fidelity

term (Algorithm 1 line 17) and facet (lines 11 and 14) can be

updated independently.

In practice, the computing nodes involved in the reconstruc-

tion algorithm are divided into two groups (see Fig. 2). The

first group of nodes (data nodes) handles variables ṽb,l of full

image size in a single (or a few) channel(s) (see Algorithm 1

2Let U be a positive definite matrix. The proximity operator of a function

f is defined as [19]: proxUf (z) = argmin
x

{

f(x) + 〈x,Ux〉/2
}

.
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Fig. 3: Per iteration computing time as a function of the number
of facets (overlap of 50% of the size of a facet), and average SNR
(SNR, SNRlog in dB) as a function of the overlap for Q = 16 (error
bars correspond to the standard deviation over the spectral channels).

line 18). The second group (facet nodes) handles variables

P̃q and Υ̃q of facet size over the full spectrum (Algorithm 1

lines 12 and 15). Note that the storage of the 3D image is

distributed between several facet nodes, which are responsible

for updating the portion of the image they own (line 20). In

addition, the Fourier transform is computed for each channel

l only on the data nodes (1, l) (line 7). Parts of the Fourier

plane, selected by the masks Mb,l, are then transferred to the

remaining data nodes (b, l)2≤b≤B (line 9). The vector el ∈ R
L

in line 19 contains a 1 in position l, 0 elsewhere.

To further accelerate the convergence of the algorithm, we

leverage a preconditioning strategy based on the inverse of

the sampling density [26] to update the data fidelity terms

(line 17). Finally, the weights ωq and ωq (ω for SARA,

and ω, ω for HyperSARA) are adjusted following a standard

reweighting scheme [27], leading to a sharper regularization

of the problem [14]. Under technical assumptions [19], Algo-

rithm 1 is ensured to converge to a solution to problem (2)-(3).

IV. EXPERIMENTS ON SYNTHETIC DATA

Following [14], we generate a wideband image of the W28

supernova remnant composed of N = 1024 × 1024 pixels

in L = 20 spectral channels (≈ 107 pixels in total). The

measurement operator relies on a realistic spatial Fourier

sampling, yielding M ≈ N/2 measurements per channel.

The resulting visibilities are affected by an additive zero-

mean white Gaussian noise, leading to an input signal-to-noise

ratio iSNR = 10 log10

(∑
l‖Φlxl‖

2
2

LMσ2

)
of 60 dB, with σ2 the

noise variance. We investigate the performance of the proposed

faceted prior for a varying number of facets Q, and a varying

size of overlap between contiguous facets. Reconstruction

performance is evaluated in terms of computing time and

quality using two criteria: the average signal-to-noise ratio

(SNR), defined as SNR(X) = 20
L

∑
l log10

(
‖xl‖2
‖xl−xl‖2

)
, and

the average SNR computed over the logarithm of the images,

denoted by SNRlog. The SNRlog is chosen to evaluate the

reconstruction of faint emissions (to which the standard SNR
is not sensitive). Note that in RI, an accurate reconstruction

of faint emissions is as important as a precise estimation of

bright sources, given the high dynamic range of sky images.

Reconstructions are performed using three methods:
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Fig. 4: Synthetic data results reported for the channel 1 (first two columns) and 20 (last two columns) for the faceted (column 1 and 3)
and standard HyperSARA (column 2 and 4). From top to bottom are reported the ground truth with the associated normalized uv-coverage,
the reconstructed and residual images. A number of 16 facets has been considered, with an overlap of 50% of the size of a facet. The
non-overlapping tiles underlying the facets are delineated on the relevant residual images in white dotted lines, with the central facet in
continuous lines. Our approach gives an imaging quality similar to HyperSARA for high intensity emissions, and outperforms it for faint
emissions as can be seen on the reconstructed images (zoomed region). The faceted approach yields better or comparable residual images of
very small amplitude when compared to HyperSARA (last row). Note that the square-shaped patterns observed on the residual images are
not likely to be related to the faceting as (i) they are not aligned with the facet borders, (ii) they also appear for the standard HyperSARA.

(i) SARA [11] is taken as reference in terms of computing

time due to its lower computational cost, with µ = 10−3;

(ii) HyperSARA [14] is taken as reference in terms of

reconstruction quality, with µ = 10−3.

(iii) Proposed faceted approach, with, for every q ∈
{1, . . . , Q}, µq = 10−5. The computing time of Al-

gorithm 1 is evaluated for a varying number of facets

Q ∈ {4, 9, 16}, and a fixed overlap corresponding to

50% of the size of a facet. Reconstruction performance

is evaluated for Q = 16 and a varying amount of

overlap (6%, 20%, 33% and 50% of the size of a facet,

corresponding to 16, 64, 128 and 256 pixels respectively).

The results reported in Fig. 3 show that the proposed

approach gives a good reconstruction of high intensity pixels

(reflected by an SNR close to HyperSARA) for a computing

time significantly closer to the SARA approach as the number

of facets increases. Note that the reconstruction performance

of SARA is limited in terms of resolution and sensitivity, given

the nature of the Fourier sampling in radio-astronomy and the

absence of prior specifically exploiting spectral correlations.

Even if the performance of the proposed approach does not

vary significantly in terms of SNR as the overlap increases, the

SNR taken over the log of the image improves significantly.

This criterion reflects the ability of the faceted prior to enhance

the estimation of faint emissions, beyond HyperSARA, by pro-

moting local spectral correlations. This observation is further

confirmed by the reconstructed images reported in Fig. 4 for

the channels 1 and 20. The associated residual images (last

row of Fig. 4) are comparable to or better than HyperSARA.

V. CONCLUSION AND FUTURE WORK

We have proposed a highly parallelizable faceted low-

rankness and joint average sparsity prior for wideband RI

imaging. In comparison with HyperSARA, experiments con-

ducted on realistic synthetic data show that the proposed

approach offers acceleration through facet parallelization, and

therefore an increased potential of scalability to large data and

image sizes, for a similar imaging quality. The results suggest

the proposed prior promotes local spatial correlations, in that

it consistently enhances the reconstruction of faint emissions

for a varying number of facets and overlap size. Future work

will be focused on validating the proposed prior on real data,



and integrating the associated imaging algorithm in the C++

library Puri-Psi (https://basp-group.github.io/Puri-Psi/).

https://basp-group.github.io/Puri-Psi/
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