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1. Context and proposed approach

• Objective: form extreme size wideband image X from incomplete data
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 optimization problem: minimize
X∈R

N×L

+

f
(
Y, Φ(X)

)

︸ ︷︷ ︸

data fitting

+ r(X)
︸ ︷︷ ︸

regularization

• Spectral correlations: low-rankness and joint-sparsity regularization

r(X) = λ‖X‖∗,ω + µ‖Ψ
†
X‖2,1,ω, Ψ

† ∈ R
R×N sparsifying dictionary

 prohibitive cost: radio-astronomy, L ≈ 103 channels, N ≈ 1014 pixels

• Proposed approach: facet-based low-rankness and joint sparsity prior

r(X) =

Q
∑

q=1

λq‖WqS̃qX‖∗,ωq
+ µq‖Ψ

†
qSqX‖2,1,ωq

 define dictionary Ψ
†
q based on the structure of Ψ

†;

(exact decomposition when Ψ
† is a wavelet dictionary [1])

 more scalable, promotes local spectral correlations ;

 Sq, S̃q selection operators, weights Wq to mitigate faceting artifacts.

2. Application to radio-astronomy

• Measurement operator:

Φ(X) =
(
Φb,lxl

)

1≤l≤L,1≤b≤B
, Φb,l = Θb,lGb,lFZ

xl ∈ R
N image in channel l (column of X)

F ∈ C
K×K Fourier transform

Z ∈ R
K×N zero-padding and scaling operator

Θb,l ∈ R
Mb,l×Mb,l natural weighting matrix (data block b, channel l)

Gb,l ∈ C
Mb,l×K interpolation and calibration kernels

• Problem formulation: extension of HyperSARA [2] – a wideband
radio-interferometric (RI) imaging approach

 data fidelity: per block & channel ℓ2 constraint, controlled by εb,l

minimize
X∈R

N×L

+

∑

l,b

ιB(yb,l,εb,l)

(
Φb,lxl

)

︸ ︷︷ ︸
f(Y,Φ(X))

+

Q∑

q=1

‖WqS̃qX‖∗,ωq + µq‖Ψ
†
qSqX‖2,1,ωq

︸ ︷︷ ︸
r(X)

• Imaging algorithm: preconditioned primal-dual algorithm [3].
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3. Illustration on synthetic data

• Simulation settings:

– synthetic wideband image of the W28 supernova remnant;

– L = 20 channels, N = 1024 × 1024 pixels, M ≈ 0.5N , SNR = 60 dB;

– faceted HyperSARA compared to HyperSARA [2] and single channel
reconstruction (SARA [4]):

⊲ quality comparable to HyperSARA, much lower computing time ;

⊲ overall reconstruction improvement of very low intensity emissions ;

⊲ limited performance of SARA: single channel  limited range of
spatial frequencies exploited (nature of RI Fourier sampling).
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Figure 1: Results for the channel 1 (first two columns) and 20 (last two columns) for the
faceted (column 1 and 3, overlap of 50%) and standard HyperSARA (column 2 and 4). From
top to bottom: ground truth, reconstructed and residual images (facets delineated in white).
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Figure 2: Computing time vs. number of facets (overlap of 50% overlap), and average SNR
(SNR, SNRlog) vs. overlap (error bars: ±1 standard deviation computed over the channels).

4. Conclusions and perspectives

• Conclusions:

X faceted prior for scalable wideband imaging ;

X promote local spectral correlations via a facet-based nuclear norm

 better recovery of faint emissions compared to HyperSARA.

• Future work:

→ scalability: 16 GB proof of concept image reconstruction of Cygnus A;
→ Production HPC code: C++ version of Puri-Psi software

(https://basp-group.github.io/Puri-Psi/)
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