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Abstract—Hyperspectral images exhibit strong spectral correlations,

which can be exploited via a low-rankness and joint-sparsity prior when

reconstructed from incomplete and noisy measurements. A state-of-the-

art solution consists in using a regularization term based on both the

ℓ2,1 and the nuclear norms, which however does not scale well with

large numbers of spectral channels and huge image sizes. To alleviate

this issue, we propose a parallelizable faceted low-rankness and joint-

sparsity prior to improve the scalability of the associated imaging algorithm

while preserving its reconstruction performance and better promoting local

spectral correlations. We illustrate our approach on synthetic data in the

context of radio-astronomy.

I. A SCALABLE LOW-RANKNESS AND JOINT-SPARSITY PRIOR

Context and motivations. Hyperspectral (HS) imaging consists in

recovering an image in several contiguous spectral channels from a set

of noisy, possibly incomplete measurements. The problem can be cast

as the following generic optimization task

minimize
X∈R

N×L

+

f(Y,ΦX) + r(X) (1)

where N is the image size, L is the number of spectral channels, X is

the unknown HS image, Φ ∈ C
M×N represents a linear measurement

operator and Y ∈ C
M×L are the measurements. The functions f

and r are respectively the data fitting and the regularization terms,

encoding additional prior on the structure of X . In many applications,

X exhibits significant spectral correlations, which can be exploited

in the estimation process [1]–[4]. An efficient approach consists in

resorting to low-rank and joint-sparse regularizations based on both

the nuclear and ℓ2,1 norms [5]: r(X)=λ‖X‖∗+µ‖Ψ†
X‖2,1, where

Ψ
† ∈ R

P×N represents a sparsifying dictionary. To solve the resulting

problem, [6] proposed an iterative primal-dual (PD) algorithm, which

can handle all the functions in parallel without needing sub-iterations

or to invert the linear operators involved [7]. Nevertheless, handling

r may be computationally demanding in practice, and consequently

not suitable in a very high dimensional setting. Radio-astronomy is an

extreme example: new generation of radio telescopes are expected to

provide surveys with sub-arcsec resolution over thousands of frequency

channels, producing widefield images composed of 1014 pixels for the

Square Kilometer Array (SKA) [8]. To overcome this issue, scalable

alternatives to the nuclear norm have been proposed in the literature.

In [9], the nuclear norm is formulated as a solution to a scalable non-

convex problem. However, due to the non-convexity, methods such

as the primal-dual algorithm cannot be used. Alternatively, in [10]

a scalable low-rank framework based on graph signal processing is

introduced when the measurements are in the image domain, which

is not the case for applications such as radio-astronomy (where

observations are acquired in the Fourier domain).

Proposed approach. We propose a simple facet-based version of

the ℓ2,1 and nuclear norm regularization expressed as

r(X) =

I∑

i=1

λi‖WiS̃iX‖∗ + µi‖Ψ
†
iSiX‖2,1 (2)

where the masking operators {S̃i,Si}
I
i=1 produce spatially over-

lapping groups of pixels (i.e., rows of X) referred to as facets,

whose definition is application-dependent. The diagonal weighting

matrices {Wi}
I
i=1 are aimed at ensuring a smooth transition between

facets to reduce potential tessellation artifacts. Different decomposition

strategies can be adopted, e.g., tailored for the structure of the initial

dictionary Ψ
† (when Ψ

† is a wavelet transform, it can be exactly

decomposed in terms of facet-based wavelet transforms Ψ
†
i [11]). This

prior offers additional degrees of parallelism to algorithms based on

variable splitting [12], in particular for the PD algorithm [13].

Indeed, leveraging advanced PD functionalities, at each iteration,

each term of the objective function (i.e. each facet) can be handled

independently in parallel before being aggregated to ensure conver-

gence to a solution to the global problem (1). Thus, combining the

proposed faceting prior to the PD algorithm reduces both the memory

requirement for the estimated HS image and the computational cost per

iteration, leading to a new highly scalable method for HS imaging.

II. APPLICATION TO WIDEBAND RADIO-ASTRONOMY

We leverage (2) to solve the wideband imaging problem (1) for

radio-astronomy. The proposed approach can be seen as a scalable

version of the PD algorithm HyperSARA [6] with a facet-based prior

that better promotes local spectral correlation. In this context, f models

an ℓ2 constraint. The SARA prior [14] involved in HyperSARA,

based on wavelet transforms, leads to define {Si}
I
i=1 as in [11] to

ensure an exact decomposition of the ℓ2,1 term. The operators {S̃i}
I
i=1

are defined with a larger overlap to mitigate reconstruction artifacts

resulting from the tessellation of the nuclear norm.

Simulation settings. Following [6], we simulate a wideband model

image of the W28 supernova remnant composed of N = 1024×1024
pixels and L = 20 spectral channels. The measurement operator

corresponds to a realistic spatial Fourier sampling, where M ≈ 0.5N .

The data are corrupted by an additive zero-mean white Gaussian noise,

leading to a signal-to-noise ratio (SNR) of 60 dB. To evaluate the

interest of (2), we compare the reconstruction performance of a primal-

dual algorithm to solve (1) with: (i) r(X) = µ‖Ψ†
X‖1,1, µ = 10−3

(corresponding to SARA [14]) (ii) r(X) = λ‖X‖∗ + µ‖Ψ†
X‖2,1

(HyperSARA [6]), with (λ, µ) = (1, 10−3); (iii) the proposed faceted

prior defined in (2), with I = 16 facets (4 along each spatial

dimension), and (λi, µi) = (1, 10−5) for i ∈ {1, . . . , I}.

Experimental results. The reconstructed images and error images

obtained with the three methods in channels 1 and 20 are reported

in Fig. 1, along with the reconstruction SNR and per-iteration recon-

struction time. The proposed approach yields a reconstruction quality

similar to HyperSARA (outperforming SARA), for a computing time

closer to SARA, the fastest approach. The error images specifically

highlight the efficiency of the proposed approach in reconstructing

very low intensity emission, possibly in relation with a better handling

of local spectral correlations.

Conclusion and perspectives. We have proposed a highly scalable

HS imaging method, based on a faceting prior promoting both low-

rankness and joint-sparsity of the HS image of interest. We have shown

that the proposed approach improves scalability of the state-of-the-

art HS method in radio-astronomical imaging, while preserving its

reconstruction performance. Additional experiments will be conducted

in future works to better appreciate the performance of the proposed

faceting approach. In particular, randomization could be leveraged to

control the number of facets handled at each iteration.
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Fig. 1. Reconstructed (first two rows) and error images (last rows) displayed in log scale for the different approaches (in column: ground truth, proposed
approach, HyperSARA and SARA). The reconstruction SNR for the displayed channels and per iteration computing time are: (proposed) [36.97/36.97 dB, 7.8
s], (HyperSARA) [SNR = 38.83/37.83 dB, 45 s], (SARA) [27.78/37.06 dB, 2.2 s]. Although the SNR reported for the proposed approach is smaller than the
one of HyperSARA, the images obtained with the former approach show an overall improvement in the reconstruction quality of low intensity pixels for a much
lower computing time than HyperSARA. The reconstruction performance of SARA is sub-optimal for wideband imaging since the correlation of the wideband
data is not exploited, and given the nature of Fourier sampling in radio-astronomy where high Fourier modes are probed at higher frequency channels and low
Fourier modes are probed at low frequency channels.
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