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Abstract—So far, the problem of unmixing large or multitem-
poral hyperspectral datasets has been specifically addressed in
the remote sensing literature only by a few dedicated strategies.
Among them, some attempts have been made within a distributed
estimation framework, in particular relying on the alternating
direction method of multipliers (ADMM). In this paper, we pro-
pose to study the interest of a partially asynchronous distributed
unmixing procedure based on a recently proposed asynchronous
algorithm. Under standard assumptions, the proposed algorithm
inherits its convergence properties from recent contributions in
non-convex optimization, while allowing the problem of interest
to be efficiently addressed. Comparisons with a distributed
synchronous counterpart of the proposed unmixing procedure
allow its interest to be assessed on synthetic and real data.
Besides, thanks to its genericity and flexibility, the procedure
investigated in this work can be implemented to address various
matrix factorization problems.

Index Terms—Partially asynchronous distributed estimation,
hyperspectral unmixing, non-convex optimization.

I. INTRODUCTION

A
CQUIRED in hundreds of contiguous spectral bands,

hyperspectral (HS) images present a high spectral res-

olution, which is mitigated by a lower spatial resolution in

specific applications such as airborne remote sensing. The

observed spectra are thus represented as mixtures of signatures

corresponding to distinct materials. Spectral unmixing then

consists in estimating the reference signatures associated with

each material, referred to as endmembers, and their relative

fractions in each pixel of the image, referred to as abundances,

according to a predefined mixture model. In practice, a linear

mixing model (LMM) is traditionally adopted when the de-

clivity of the scene and microscopic interactions between the

observed materials are negligible [1]. Per se, HS unmixing can

be cast as a blind source separation problem and, under the

above assumptions, can be formulated as a particular instance

of matrix factorization.

For this particular application, using distributed procedures

can be particularly appealing to estimate the abundances since

the number of pixels composing the HS images can be orders
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of magnitude larger than the number of spectral bands in which

the images are acquired. In this context, distributed unmixing

methods previously proposed in the remote sensing literature

essentially rely on synchronous algorithms [2]–[5] with lim-

ited convergence guarantees. A different approach consists

in resorting to a proximal alternating linearized minimization

(PALM) [6], [7] to estimate the mixture parameters (see, e.g.,

[8]–[10] in this context), which leads to an easily distributable

optimization problem when considering the update of the

abundances, and benefits from well established convergence

results.

While a synchronous distributed variant of the PALM algo-

rithm is particularly appealing to address HS unmixing, this

algorithm does not fully exploit the difference in the com-

puting performance of the involved computing units, which is

precisely the objective pursued by the numerous asynchronous

optimization techniques proposed in the optimization literature

(e.g., [11]–[19]). For distributed synchronous algorithms, a

master node waits for the information brought by all the

available computation nodes (referred to as workers) before

proceeding to the next iteration (e.g., updating a variable

shared between the different nodes, see Fig. 1). On the

contrary, asynchronous algorithms offer more flexibility in the

sense that they allow more frequent updates to be performed

by the computational nodes, thus reducing their idleness time.

In particular, asynchronous algorithms can lead to a significant

speed up in the algorithm computation time by allowing the

available computational units (i.e., cores and machines) to

work in parallel, with as few synchronizations (i.e., memory

locks) as possible [20]–[22]. For some practical problems,

there is no master node, and the workers can become active at

any time and independently from the other nodes [21]–[23].

For other applications, a master node first assigns different

tasks to all the available workers, then aggregates information

from a given node as soon as it receives its information, and

launches a new task on this specific node (see Fig. 2). In this

partially asynchronous setting, the workers may make use of

out-of-date information to perform their local updates [19].

Given the possible advantages brought by the asynchronicity,

we propose an asynchronous unmixing procedure based on

recent non-convex optimization algorithms. To this end, we

consider a centralized architecture as in [24], composed of

a master node in charge of a variable shared between the

different workers, and Ω workers which have access to a

local variable (i.e., only accessible from a given worker) and

a (possibly out-of-date) local copy of the shared variable.

Asynchronous methods adapted to the aforementioned con-
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text include many recent papers, e.g., [20]–[22], [24], [25]. For

HS image unmixing, Gauss-Seidel optimization schemes have

proved convenient to decompose the original optimization task

into simpler sub-problems, which can be solved or distributed

efficiently [26]. We may mention the recently proposed par-

tially asynchronous distributed alternating direction method of

multipliers (ADMM) [24], used to solve a distributed opti-

mization task reformulated as a consensus problem. However,

HS unmixing does not allow traditional block coordinate

descent (BCD) methods (such as the ADMM [27], [28]) to

be efficiently applied due to the presence of sub-problems

which require iterative solvers. In such cases, the PALM

algorithm [6] and its extensions [7], [29], which are sequential

algorithms, combine desirable convergence guarantees for

non-convex problems with an easily distributable structure in

a synchronous setting. Recently, PALM has been extended to

accommodate asynchronous updates [21], and analyzed in a

stochastic and a deterministic framework. More specifically,

the author in [21] considers the general case where all the

variables to be estimated are shared by the different workers.

However, the explicit presence of a maximum allowable delay

in the update steps is problematic, since this parameter is

not explicitly controlled by the algorithm. In addition, the

residual terms resulting from the allowed asynchronicity have

a significant impact on the step-size prescribed to ensure the

convergence of the algorithm. In practice, the use of this

step-size does not lead to a reduction of the computation

time needed to reach convergence, as it will be illustrated in

Section IV. From this practical point of view, the algorithm

proposed in [24], where the maximum delay is explicitly

controlled, appears to be more convenient. However, the use

of this ADMM-based algorithm does not ensure that the

constraints imposed on the shared variables are satisfied at

each iteration, and the sub-problems derived in the context of

HS unmixing require the use of iterative procedures. Finally,

the strategy developed in [22] allows more flexibility in the

allowed asynchronicity, while requiring slightly more stringent

assumptions on the penalty functions when compared to [21].

Consequently, this paper proposes to adapt the framework

introduced in [22], which encompasses the system structure

described in [24], to HS unmixing. Indeed, given the preceding

remarks, the framework introduced in [22] appears as one

of the most flexible to address HS unmixing in practice.

This choice is partly justified by the possible connections

between the PALM algorithm and [22]. Indeed, the PALM

algorithm enables a synchronous distributed algorithm to

be easily derived for matrix factorization problems, which

then offers an appropriate reference to precisely evaluate the

relevance of the asynchronicity tolerated by the approach

described in [22]. Another contribution of this paper consists

in assessing the interest of asynchronicity for HS unmixing,

in comparison with recently proposed synchronous distributed

unmixing procedures.

The paper is organized as follows. The problem addressed in

this paper is introduced in Section II. The proposed unmixing

procedure is detailed in Section III, along with the assumptions

required from the problem structure to recover appropriate

convergence guarantees. Simulation results illustrating the

1 Iteration k0
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Fig. 1. Illustration of a synchronous distributed mechanism (idle time in white,
transmission delay in light gray, computation delay in gray). The master is
triggered once it has received information from all the workers.
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Fig. 2. Illustration of an asynchronous distributed mechanism (idle time
in white, transmission delay in light gray, computation delay in gray). The
master node is triggered whenever it has received information from K workers
(K = 1 in the illustration).

performance of the proposed approach on synthetic and real

data are presented in Sections IV and V. Finally, Section VI

concludes this work and outlines possible research perspec-

tives.

II. PROBLEM FORMULATION

The LMM consists in representing each acquisition by a

linear combination of the endmembers mr, which are present

in unknown proportions. Assuming the data are composed of

R endmembers, where R is a priori known, and considering

that the image is divided into Ω subsets of pixels (see

Remark 1 for details) to distribute the data between several

workers, the LMM can be defined as

Yω = MAω +Bω, ω ∈ {1, . . . ,Ω} (1)

where Yω = [y1,ω, . . . ,yN,ω] is an L × N matrix whose

columns are the spectral signatures acquired for each pixel of

the ωth pixel subset. Note that each group can be assigned

a different number of pixels if needed. The columns mr of

the matrix M ∈ R
L×R are the different endmembers, and the

columns an,ω of the abundance matrix Aω ∈ R
R×N gather the

proportion of the endmembers within yn,ω . Finally, the matrix

Bω ∈ R
L×N represents an additive noise resulting from

the data acquisition and the modeling errors. The following

constraints, aimed at ensuring a physical interpretability of

the results, are usually considered

Aω � 0R,N , AT
ω1R = 1N , M � 0L,R (2)

where � denotes a term-wise inequality. Assuming the data

are corrupted by a white Gaussian noise leads to the following

data fitting term

fω(Aω,M) =
1

2

∥∥Yω −MAω

∥∥2
F
. (3)

In addition, the constraints summarized in (2) are taken into

account by defining

gω(Aω) = ιAN
(Aω) (4)
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AN =
{
X ∈ R

R×N | XT1R = 1N ,X � 0R,N

}
(5)

r(M) = ι{·�0}(M) (6)

where ιS denotes the indicator function of a set S (ιS(x) = 0

if x ∈ S , +∞ otherwise). This leads to the following

optimization problem

(A∗,M∗) ∈ argmin
A,M

Ψ(A,M) (7)

with

Ψ(A,M) = F (A,M) +G(A) + r(M) (8)

F (A,M) =
Ω∑

ω=1

fω(Aω,M), G(A) =

Ω∑

ω=1

gω(Aω). (9)

With these notations, Aω denotes a local variable (i.e.,

which will be accessed by a single worker), and M is a

global variable (i.e., shared between the different workers, see

Fig. 3). More generally, fω plays the role of a data fitting

term, whereas gω and r can be regarded as regularizers or

constraints. The structure of the proposed unmixing algorithm,

inspired by [22], is detailed in the following section.

Remark 1. In the initial formulation of the mixing model (1),

the indexes ω and Ω refer to subsets of pixels. A direct

interpretation of this statement can be obtained by dividing

a unique (and possibly large) hyperspectral image into Ω non-

overlapping tiles of smaller (and possibly different) sizes. In

this case, each tile is individually unmixed by a given worker.

Another available interpretation allows multitemporal analysis

to be conducted. Indeed, in practice, distributed unmixing

procedures are of particular interest when considering the

unmixing of a sequence of several HS images, acquired by

possibly different sensors at different dates, but sharing the

same materials [30]–[32]. In this case, ω and Ω could refer to

time instants. Each worker ω is then dedicated to the unmixing

of a unique HS image acquired at a given time instant.

The particular applicative challenge of distributed unmixing

of multitemporal HS images partly motivates the numerical

experiments on synthetic (yet realistic) and real data presented

hereafter.

Remark 2. Even if the work reported in this work has been

partly motivated by the particular application of HS unmixing,

the problem formulated in this section is sufficiently generic

to encompass a wider class of matrix factorization tasks, as

those encountered in audio processing [33], machine learning

[34], [35].

III. A PARTIALLY ASYNCHRONOUS UNMIXING

ALGORITHM

A. Algorithm description

Reminiscent of [24], the proposed algorithm relies on a

star topology configuration in which a master node supervises

an optimization task distributed between several workers. The

master node also updates and transmits the endmember matrix

M shared by the different workers. In fact, the computation

time of synchronous algorithms is essentially conditioned

by the speed of the slowest worker (see Figs. 1 and 2).

Master

Worker 1 Worker 2 Worker 3

f1, g1,A1 f2, g2,A2 f3, g3,A3

F,G, r,M

Fig. 3. Illustration of the master-slave architecture considered for the
unmixing problem (7) with Ω = 3 workers (the function and variables
available at each node are given in light gray rectangles).

Consequently, relaxing the synchronization requirements (by

allowing bounded delays between the information brought

by each worker) allows a significant decrease in the com-

putation time to reach convergence, which can scale almost

linearly with the number of workers [21], [24]. Note that,

even though asynchronous optimization schemes may require

more iterations than their synchronous counterparts to reach

a given precision, allowing more frequent updates generally

compensates this drawback in terms of computation time [24].

In the partially asynchronous setting considered, the master

node updates the variable shared by the workers once it has

received information from at least K ≪ Ω workers. The new

state of the shared variable M is then transmitted to the K

available workers, which can individually proceed to the next

step. As in [22], a relaxation step with decreasing stepsizes

ensures the convergence of the algorithm (see Algo. 1). In

order to clarify to which extent the convergence analysis

introduced in [22] is applicable to the present setting, we

consider K = 1 in the rest of this paper. However, other

values of K could be considered without loss of generality.

Details on the operations performed by the master node and

each worker are detailed in Algos. 1 and 2 respectively.

Remark 3. (a) The parameter γk is essentially instrumental

to ensure the global convergence of the partially asyn-

chronous unmixing algorithm described in this work,

following the general framework introduced in [22].

For simplicity, we have directly adopted the expression

proposed in [16] [22, Assumption D., p. 18] which has

been reported to yield satisfactory results in practice [16].

Evaluating the practical interest of different expressions

for the relaxation parameters in terms of the convergence

speed of the algorithm is an interesting prospect, which

is however beyond the scope of this paper.

(b) Note that a synchronous distributed counterpart of Algo. 1

can be easily derived for Problem (7), which partly

justifies the form chosen for Algo. 1. This version con-

sists in setting γk = 1, and waiting for the updates

performed by all the workers (i.e., K = Ω, see Step 1

of Algo. 1) before updating the shared variable M. This

implementation will be taken as a reference to evaluate

the computational efficiency of the proposed algorithm in

Sections IV and V.



4

Algorithm 1: Master node update.

Data: A(0), M(0), γ0 ∈ (0, 1], µ ∈ (0, 1), Niter, K.

Broadcast M(0) to the Ω workers ;
k ← 0 ;
Tk ← ∅ ;
while k < Niter do

Step 1 Wait for Âk
ωk

from any worker ;

Tk = Tk ∪ {ω
k} ;

dk+1
ω =

{

0 if ω ∈ Tk
dkω + 1 otherwise

;

A
k+1
ω =

{

A
k
ω + γk(Âω −A

k
ω) if ω ∈ Tk

A
k
ω otherwise

;

if (♯Tk < K) then

Go to step Step 1 ; // wait until ♯Tk ≥ K

else

M̂
k ∈ prox

ck
M

r

(

M
k +

1

ck
M

∇MF (Ak+1,Mk)
)

;

M
k+1 = M̂

k + γk(M̂
k −M

k);
γk+1 = γk(1− µγk);
Tk+1 ← ∅ ;
k ← k + 1;

Result: ANiter , MNiter .

B. Parameter estimation

A direct application of the algorithm described in Algo. 2

under the constraints (2) leads to the following update rule for

the abundance matrix Aωk

Âk
ωk = proxιAN

(
Ak

ω −
1

ck
A

ωk

∇Aω
fω
(
Ak

ωk ,M
k−dk

ωk

))

(10)

where proxιAN

denotes the proximal operator of the indicator

function ιAN
(see, e.g., [36]), and

∇Aω
fω(Aω,M) = MT

(
MAω −Yω

)
. (11)

The step-size ck
A

ωk
is chosen as in the standard PALM

algorithm, i.e.,

ckA
ωk

= Lk
A

ωk
=
∥∥(Mk−dk

ωk )TMk−dk

ωk

∥∥
2

(12)

where Lk
A

ωk
denotes the Lipschitz constant of

∇Aω
fω(·,M

k−dk

ωk ) (see [6, Remark 4 (iv)]). Note that

the projection proxιAN

(·) can be exactly computed (see [37],

[38] for instance). Similarly, the update rule for the

endmember matrix M is

M̂k = proxι{·�0}

(
Mk −

1

ck
M

∇MF
(
Ak+1,Mk

))
(13)

with

∇MF
(
A,M

)
=
∑

ω

(MAω −Yω)A
T
ω (14)

ckM = Lk
M =

∥∥∑

ω

Ak+1
ω (Ak+1

ω )T
∥∥
2
. (15)

and Lk
M

is the Lipschitz constant of ∇MF
(
Ak, ·

)
.

C. Convergence guarantees

In general, the proposed algorithm requires the following

assumptions, based on the convergence results given in [6,

Theorem 1] and [22, Theorem 1].

Algorithm 2: ωth worker update (since the shared variable

M may have been updated by the master node in the

meantime, M̃ corresponds to a possibly delayed version

of the current Mk). From the master point of view,

M̃ = Mk−dk

ω .

Data: M̃, Ãω .
begin

Wait for (M̃, Ãω) from the master node;

Âω ∈ proxcAω
gω

(

Ãω −
1

cAω

∇Aω
fω

(

Ãω , M̃
)

)

;

Transmit Âω to the master node;

Result: Âω .

Assumption 1 (Algorithmic assumption). Let (ωk, d
k
ωk) ∈

{1, . . . ,Ω} × {1, . . . , τ} denote the couple composed of the

index of the worker transmitting information to the master

at iteration k, and the delay between the (local) copy M̃k

of the endmember matrix M and the current state Mk (i.e.,

M̃k , Mk−dk

ωk ). The allowable delays dk
ωk are assumed to

be bounded by a constant τ ∈ N
∗. In addition, each couple

(ωk, d
k
ωk) represents a realization of a random vector within

the probabilistic model introduced in [22, Assumption C].

Assumption 2 (Inherited from PALM [6]).

(i) For any ω ∈ {1, . . . ,Ω}, gω : RR×N → (−∞,+∞] and

r : RL×R → (−∞,+∞] are proper, convex lower semi-

continuous (l.s.c.) functions;

(ii) For ω ∈ {1, . . . ,Ω}, fω : R
R×N × R

L×R → R is a

C1 function, and is convex with respect to each of its

variables when the other is fixed;

(iii) Ψ, fω , gω , and r are lower bounded, i.e.,

infRR×N×RL×R Ψ > −∞, infRR×N×RL×R fω > −∞,

infRR×N gω > −∞, and infRL×R r > −∞;

(iv) Ψ is a coercive semi-algebraic function (see [6]);

(v) For all ω ∈ {1, . . . ,Ω}, M ∈ R
L×R,

Aω 7→ fω(Aω,M) is a C1 function, and

the partial gradient ∇Aω
fω(·,M) is Lipschitz

continuous with Lipschitz constant LAω
(M). Similarly,

M 7→ fω(Aω,M) is a C1 function, and the partial

gradient ∇Mfω(Aω, ·) is Lipschitz continuous, with

constant LM,ω(Aω);
(vi) the Lipschitz constants used in the algorithm, i.e.,

LAk

ωk

(M̃k) and LM,ωk
(Âk

ωk) (denoted by Lk
Ak

ωk

and

Lk
M,ωk

in the following) are bounded, i.e. there exists

appropriate constants such that for all iteration index k

0 < L−
A

≤ Lk
A

ωk
≤ L+

A
, 0 < L−

M
≤ Lk

M,ωk ≤ L+

M
.

(vii) ∇F is Lipschitz continuous on bounded subsets.

Assumption 3 (Additional assumptions). (i) For all ω ∈
{1, . . . ,Ω}, Aω ∈ R

R×N , ∇Aω
fω(Aω, ·) is Lipschitz

continuous with Lipschitz constant LAω,M(Aω);

(ii) The Lipschitz constants LAωk
,M(Âk

ωk) (denoted by

Lk
Aωk

,M in the following) is bounded, i.e. there exists

appropriate positive constants such that for all k ∈ N:

0 < L−
A,M ≤ Lk

Aωk
,M ≤ L+

A,M.

Assumption 1 summarizes standard algorithmic assump-

tions to ensure the convergence of Algo. 1. Besides, As-
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sumption 2 gathers requirements of the traditional PALM

algorithm [6], under which the distributed synchronous version

of the proposed algorithm can be ensured to converge.

Note that the non-convex problem (7) obviously satisfies

Assumptions 2 to 3 for the functions defined in Section II

(see [6] for examples of semi-algebraic functions). In partic-

ular, the bounds on the Lipschitz constants involved in As-

sumptions 2(vii) and 3(ii) are satisfied in practice, considering

the fact that hyperspectral unmixing is generally conducted

on reflectance data (implying Yω ∈ [0, 1]L×N ), and given the

constraints imposed on Aω and M respectively.

Under Assumptions 1 to 3, the analysis led in [22] allows

the following convergence result to be satisfied.

Proposition 1. Suppose that Problem (7) satisfies the require-

ments specified in Assumptions 1 to 3. Define the sequence

{vk}k∈N of the iterates generated by Algos. 1 and 2, with

vk , (Ak,Mk) and the parameters in Algo. 2 chosen as

ckA
ωk

= Lk
A

ωk
, ckM = Lk

M.

Then, the following convergence results are obtained:

(i) the sequence {Ψ(vk)}k∈N converges almost surely;

(ii) every limit point of the sequence {vk}k∈N is a critical

point of Ψ almost surely.

Proof. See sketch of proof in the Appendix.

The convergence analysis is conducted using an auxiliary

function (introduced in Lemma 2 in Appendix) to handle

asynchronicity [21]. The resulting convergence guarantees

then allow convergence results associated with the original

problem (7) to be recovered.

Besides, the following result ensures a stronger convergence

guarantee for the synchronous counterpart of Algo. 1.

Proposition 2 (Finite length property, following from [6]).

Suppose that Problem (7) satisfies the requirements specified

in Assumptions 2 to 3. Define the sequence {vk}k∈N of the

iterates generated by the synchronous version of Algo. 1, with

vk , (Ak,Mk) and

ckA
ωk

= Lk
A

ωk
, ckM = Lk

M, γk = 1, K = Ω.

Then, the following properties can be proved:

(i) the sequence {vk}k∈N has finite length

+∞∑

k=1

∥∥vk+1 − vk
∥∥ < +∞

where
∥∥vk+1 − vk

∥∥ =

√∥∥Ak+1 −Ak
∥∥2

F
+
∥∥Mk+1 −Mk

∥∥2
F
;

(ii) the sequence {vk}k∈N converges to a critical point of Ψ.

Proof. These statements result from a direct application of [6,

Theorem 1, Theorem 3] and [6, Remark 4 (iv)].

Note that an additional volume regularization can be con-

sidered, as long as it satisfies the conditions given in Assump-

tion 2, and more specifically the convexity Assumption 2(i).

For instance, the mutual distance between the endmembers

introduced in [39] can be easily accounted for.

IV. EXPERIMENTS WITH SYNTHETIC DATA

To illustrate the interest of the allowed asynchronicity,

we compare the estimation performance of Algo. 1 to the

performance of its synchronous counterpart (described in

Section III), and evaluate the resulting unmixing performance

in comparison with three unmixing methods proposed in the

literature. We propose to consider the context of multitemporal

HS unmixing, which is of particular interest for recent remote

sensing applications [30]–[32]. For this application, a natural

way of distributing the data consists in assigning a single HS

image to each worker. To this end, we generated synthetic

data composed of Ω = 3 HS images resulting from linear

mixtures of R ∈ {3, 6, 9} endmembers acquired in L = 413
bands. The generated abundance maps vary smoothly over

time (i.e., from one image to another) to reproduce a realistic

evolution of the scene of interest. As in [40, Section V],

the abundance maps were obtained by multiplying reference

abundance coefficients with trigonometric functions to ensure

a sufficiently smooth temporal evolution. For the dataset with

R = 3, the reference abundance map was obtained by

unmixing the Moffett scene (same area as in [41]). For the

datasets composed of R ∈ {6, 9} endmembers, we directly

used the synthetic abundance maps introduced in [42] as a

reference1. Each image, composed of 10, 000 pixels, was then

corrupted by an additive white Gaussian noise whose variance

ensures a signal-to-noise ratio (SNR) of 30 dB.

Note that the distributed methods were run on a single

computer for illustration purposes using the built-in low

level distributed computing instructions available in Julia [43]

(which provide an MPI-like interface). In this case, the workers

are independent processes.

As is common with many blind unmixing algorithms, the

performance of the proposed approach is expected to be

limited in cases where the initial endmember matrix does not

properly represent the observed materials. This observation

essentially results from the nonconvex nature of the prob-

lem presently addressed, and is not specific to the proposed

approach. To the best of the authors’ knowledge, no blind

unmixing algorithm can systematically ensure the convergence

of the generated iterates to a “satisfactory” critical point of the

objective function in cases where the initialization is relatively

poor.

A. Compared methods

The estimation performance of the proposed algorithm has

been compared to those of several unmixing methods from

the literature. Note that only the computation times associated

with Algo. 1 and its synchronous version, implemented in

Julia [43], can lead to a consistent comparison in this ex-

periment. Indeed, some of the other unmixing methods have

been implemented in MATLAB by their respective authors. In

the following lines, implementation details specific to each of

these methods are given.

1) VCA/FCLS: the endmembers are first extracted on each

image using the vertex component analysis (VCA) [44],

1Abundance maps available at http://www.umbc.edu/rssipl/people/aplaza/
fractals.zip.

http://www.umbc.edu/rssipl/people/aplaza/fractals.zip
http://www.umbc.edu/rssipl/people/aplaza/fractals.zip
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Fig. 4. Evolution of the objective function for the synthetic datasets, obtained for Algo. 1 and its synchronous version until convergence (model (1)).

which requires pure pixels to be present. The abundances

are then estimated for each pixel by solving a fully con-

strained least squares problem (FCLS) using the ADMM

algorithm described in [45];

2) SISAL/FCLS: the endmembers are extracted on each

image by the simplex identification via split augmented

Lagrangian (SISAL) [46], and the abundances are esti-

mated for each pixel by FCLS. The tolerance for the

stopping rule is set to 10−4;

3) Proposed method (referred to as ASYNC): the endmem-

bers are initialized with the signatures obtained by VCA

on the first image of the sequence, and the abundances are

initialized by FCLS. The synchronous and asynchronous

algorithms are stopped when the relative decrease of the

objective function between two consecutive iterations is

lower than 10−5, with a maximum of 100 and 500 itera-

tions respectively. Its synchronous counterpart is referred

to as SYNC. The relaxation parameter γk (k ∈ N
∗) is

updated as in [22] with γ0 = 1 and µ = 10−6 (see Algo.

1). In the absence of any temporal or spatial reglariza-

tion, the lexicographically ordered pixels composing the

datasets are evenly distributed between Ω = 3 workers;

4) DAVIS [21]: this asynchronous algorithm only differs

from the previous algorithm, in that no relaxation step is

considered, and in the expression of the descent stepsize

used to ensure the algorithm convergence. To ensure a

fair comparison, it has been run in the same setting as

the proposed asynchronous method;

5) DSPLR [5]: the DSPLR algorithm is considered with the

stopping criterion proposed in [5] (set to ε = 10−5), with

a maximum of 100 iterations. The same initialization as

the two previous distributed algorithms is used.

The estimation performance reported in Table I are evalu-

ated in terms of

(i) endmember estimation and spectral reconstruction

through the average spectral angle mapper (aSAM)

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT

r m̂r

‖mr‖2‖m̂r‖2

)
(16)

aSAM(Y) =
1

NΩ

∑

n,ω

arccos

(
yT
n,ω

(
M̂ân,ω

)

‖yn,ω‖2‖M̂ân,ω‖2

)
; (17)

TABLE I
SIMULATION RESULTS ON SYNTHETIC DATA (GMSE(A)×10−3 , RE

×10−4).

Algorithm aSAM(M) (°) GMSE(A) RE aSAM(Y) (°) time (s)

R
=

3
VCA/FCLS [44] 1.82 1.27 0.64 1.45 1
SISAL/FCLS [46] 1.55 0.94 0.62 1.43 2
DSPLR [5] 0.84 2.76 0.59 1.41 139
DAVIS [21] 1.44 0.92 0.63 1.45 10
SYNC 0.76 0.33 0.60 1.41 197
ASYNC 0.85 0.38 0.60 1.41 101

R
=

6

VCA/FCLS [44] 2.55 1.08 1.11 1.64 1
SISAL/FCLS [46] 1.65 0.50 0.91 1.53 2.5
DSPLR [5] 3.64 4.65 7.73 1.45 116
DAVIS [21] 1.87 1.22 0.96 1.58 45.3
SYNC 0.63 0.28 0.78 1.45 462
ASYNC 1.09 0.59 0.81 1.48 46

R
=

9

VCA/FCLS [44] 3.07 2.59 6.75 2.37 2

SISAL/FCLS [46] 2.17 1.77 5.11 2.14 4
DSPLR [5] 8.52 6.53 1.48 1.56 153
DAVIS [21] 1.57 1.27 1.98 1.69 84
SYNC 0.87 0.40 1.50 1.57 762
ASYNC 0.88 0.54 1.52 1.58 170

(ii) abundance estimation through the global mean square

error (GMSE)

GMSE(A) =
1

ΩRN

Ω∑

ω=1

‖Aω − Âω‖
2
F; (18)

(iii) quadratic reconstruction error (RE)

RE =
1

ΩLN

Ω∑

ω=1

‖Yω − M̂Âω‖
2
F. (19)

B. Results

The results reported in Table I correspond to a single trial of

the different algorithms. More precisely, the results reported

for VCA/FCLS are representative of the results obtained

over multiple runs, which have not been observed to vary

significantly from one run to another. A similar observation has

been made for multiple runs of the asynchronous algorithms

(ASYNC and DAVIS) whose performance does not change

significantly over different runs for the simulation setting

adopted in this paper, both in terms of estimation accuracy

and computation time.

• Endmember estimation: the proposed asynchronous al-

gorithm leads to competitive endmember estimation for

the three synthetic datasets (in terms of aSAM and RE),
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(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015 (f) 10/13/2015

Fig. 5. Mud lake dataset used in the MTHS experiment with the corresponding acquisition dates. The area delineated in red in Fig. 5(e) highlights a region
known to contain outliers (this observation results from a previous analysis led on this dataset in [31]).

notably in comparison with its synchronous counterpart.

We can note that the DSPLR algorithm yields interesting

estimation results for R = 3, which however significantly

degrade as R increases. This partly results from the ma-

trix inversions involved in the update steps of [5], which

remain relatively sensitive to the conditioning of the

involved matrices, and consequently to the choice of the

regularization parameter of the augmented Lagrangian.

• Abundance estimation: the synchronous PALM algo-

rithm leads to the best abundance estimation results, even

in the absence of any additional regularization on the spa-

tial distribution of the abundances. In this respect, we can

note that the performance of PALM and its asynchronous

version is relatively similar, and consistently outperforms

the other unmixing methods.

• Overall performance: the performance measures re-

ported in Table I show that the proposed distributed algo-

rithm yields competitive estimation results, especially in

terms of the required computational time when compared

to its synchronous counterpart. To be more explicit, the

evolution of the objective function versus the computation

time shows the interest of the allowed asynchronicity to

speed up the unmixing task, as illustrated in Fig. 4 (the

computation time required by Algo. 1 is almost 4 times

lower than the one of its synchronous counterpart).

Note that even though the SYNC and ASYNC algorithms

start from the same initial point, there is no guarantee that both

methods converge to the same critical point, which essentially

accounts for the differences in the results reported for both

methods in Table I. For the asynchronous algorithms, another

potential source of variability comes from the variations in the

order the updates are performed from one run to another. For

the simulation setting adopted in this work, such variations

have not been observed to lead to significant differences in

the estimation results.

V. EXPERIMENTS WITH REAL DATA

In practice, as emphasized earlier, distributed unmixing

procedures are of particular interest when considering the

unmixing of large HS images, or of a sequence of HS

images acquired by possibly different sensors at different time

instants [30]–[32], referred to as multitemporal HS (MTHS)

images. The unmixing of two large real HS images is first

proposed, whereas the application to MTHS images essentially

motivates the last example addressed in this section. The

experiments have been conducted in the same setting as in

the previous section (the pixels composing the datasets are

evenly distributed between Ω = 3 workers).

A. Description of the datasets

a) Cuprite dataset (single HS image): the first dataset

considered in this work consists of a 190×250 subset extracted

from the popular Cuprite dataset. In this case, reference

abundance maps are available from the literature (see for

instance [44], [47]). After removing water-absorption and low

SNR bands, 189 out of the 224 spectral bands initially avail-

able were exploited in the subsequent unmixing procedure.

The data have been unmixed with R = 10 endmembers based

on prior studies conducted on this dataset [44], [47].

b) Houston dataset (single HS image): the second dataset

considered hereafter was acquired over the campus of the

University of Houston, Texas, USA, in June 2012 [48]. The

152×108 scene of interest is composed of 144 bands acquired

in the wavelength range 380nm to 1050nm. The data have

been unmixed with R = 4 endmembers based on prior studies

conducted on this dataset [49].

c) Mud lake dataset (MTHS images): we finally consider

a real sequence of AVIRIS HS images acquired between

2014 and 2015 over the Mud Lake, located in the Lake

Tahoe region (California, United States of America)2. The

100 × 100 scene of interest is in part composed of a lake

and a nearby field displayed in Fig. 5. The images have

been unmixed with R = 3 endmembers based on results

obtained from prior studies conducted on these data [31], [50],

and confirmed by the results of the noise-whitened eigengap

algorithm (NWEGA) [51] reported in Table II. After removing

the water absorption bands, 173 out of the 224 available

spectral bands were finally exploited.

B. Results

Given the absence of ground truth for the different datasets

(except the indications available in the literature for the

2The images from which the interest of interest is extracted are freely
available from the online AVIRIS flight locator tool at http://aviris.jpl.nasa.
gov/alt locator/.

http://aviris.jpl.nasa.gov/alt_locator/
http://aviris.jpl.nasa.gov/alt_locator/
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TABLE II
ENDMEMBER NUMBER R ESTIMATED BY NWEGA [51] ON EACH IMAGE

OF THE MUD LAKE DATASET.

04/10/2014 06/02/2014 09/19/2014 11/17/2014 04/29/2015 10/13/2015

NWEGA 3 3 3 4 3 4

Cuprite scene [44], [47]), the estimation results obtained by

the proposed algorithms are compared to the other unmixing

procedures in terms of the RE and the aSAM introduced

in (17) and (19) respectively (see Table III). The consistency

of the estimated abundance maps, reported in Figs. 6 to 10, is

also considered when analyzing the different results.

a) Cuprite dataset: except for the DSPLR algorithm,

whose scale indeterminacy leads to results somewhat harder to

interpret for this dataset, the results obtained by the different

methods are relatively similar, both in terms of the estimated

abundance maps and the recovered endmembers (see Fig. 6).

b) Houston dataset: the distributed algorithms yield

abundance maps in agreement with the VCA/FCLS and SISAL

algorithms (see Fig. 7). We can note that the algorithms SYNC,

ASYNC and DSPLR provide a more contrasted abundance

map for the concrete than VCA/FCLS, SISAL/FCLS and

DAVIS.

c) Mud lake dataset: the algorithms SYNC, DAVIS [21]

and ASYNC lead to particularly convincing abundance maps,

in the sense that the abundances of the different materials (con-

taining soil, water and vegetation) are consistently estimated

for each time instant, contrary to VCA/FCLS, SISAL/FCLS

and DSPLR (see Figs. 8 to 10). At ω = 5, VCA/FCLS and

SISAL, which have been applied individually to each image of

the sequence, appear to be particularly sensitive to the presence

of outliers in the area delineated in red in Fig. 5(e) (see [31] for

a previous study on this dataset). This observation is further

confirmed by the abundance maps reported at t = 5 in Figs. 8

and 9, as well as the corresponding endmembers reported in

Fig. 11 (whose amplitude is significantly greater than 1). This

sensitivity notably results from the fact that each scene has

been analyzed independently from the others in this specific

context (note that the results would have been worse if these

methods were applied to all the images at once).

d) Global reconstruction performance: the performance

measures reported for the different datasets in Table III confirm

the interest of the PALM algorithm and its asynchronous

variant for unmixing applications. The asynchronous variant

can be observed to lead to a notable reduction of the compu-

tation time (see also Fig. 12), while allowing a reconstruction

performance similar to the classical PALM algorithm to be

obtained.

VI. CONCLUSION AND FUTURE WORK

This paper focused on a partially asynchronous distributed

unmixing algorithm based on recent contributions in non-

convex optimization [21], [22], [24], which proves conve-

nient to address large scale hyperspectral unmixing problems.

Under relatively standard conditions, the proposed approach

inherits from the convergence guarantees studied in [22], and

from those of the traditional PALM algorithm [6], [7] for

its synchronous counterpart. Evaluated on synthetic and real

TABLE III
SIMULATION RESULTS ON REAL DATA (RE ×10−4).

Algorithm RE aSAM(Y) (°) time (s)

C
u

p
ri

te

VCA/FCLS [44] 0.51 0.96 2

SISAL/FCLS [46] 0.47 0.92 6
DSPLR [5] 1.25 1.42 20.2
DAVIS [21] 0.33 0.79 64.0
SYNC 0.15 0.55 1290
ASYNC 0.30 0.77 134

H
o

u
st

o
n

VCA/FCLS [44] 22.5 3.31 0.1

SISAL/FCLS [46] 21.3 2.01 0.6
DSPLR [5] 0.13 0.99 51.5
DAVIS [21] 14.9 2.44 22.3
SYNC 0.21 1.14 84.6
ASYNC 0.24 1.17 24.9

M
u

d
la

k
e

VCA/FCLS [44] 23.7 13.23 1

SISAL/FCLS [46] 1.65 3.09 2
DSPLR [5] 1.93 10.9 99.6
DAVIS [21] 17.61 6.27 58.9
SYNC 5.05 5.88 70.4
ASYNC 5.13 5.88 35.0

data, the proposed approach provided competitive estimation

results, while significantly reducing the computation time

to reach convergence. From a computational point of view,

implementing a fully functional, large scale asynchronous

unmixing algorithm and assessing its scalability with respect to

the volume of data involved is an interesting prospect. As with

any distributed algorithm, the computation time required by

the proposed method is expected to decrease linearly with the

number of workers assigned to the unmixing task until the cost

of the master/worker communications is comparable to the

cost of the estimation task conducted on each worker. Future

research perspectives also include the extension to different

network topology as in [18], [23], or the use of variable metrics

as described in [7], [8], [29], [52].

APPENDIX

The proposed sketch of proof adapts the first arguments

developed in [22], in order to clarify that the proposed algo-

rithm fits within this general framework. Note that a similar

proof can be obtained by induction when J blocks have to

be updated by each worker, and I blocks by the master node

(corresponding to the situation described in (7)).

Lemma 1. Under Assumptions 1 to 3, there exists two positive

constants cA and cM such that

Ψ(Ak+1,Mk+1) ≤ Ψ(Ak,Mk)

−
γk

2

(
cA − γk(L

+

A
+ L+

A,M)
)∥∥Âk

ωk −Ak
ωk

∥∥2

−
γk

2

(
cM − γkL

+

M

)∥∥M̂k −Mk
∥∥2

+
1

2
τL+

A,M

k∑

q=k−τ+1

∥∥Mq −Mq−1
∥∥2. (20)

Proof. Step 1: Assumption 2(v) allows the descent lemma

[53, p. 683] to be applied to M 7→ F (A,M), leading to

F (Ak+1,Mk+1) ≤ F (Ak+1,Mk) +
Lk
M

2

∥∥Mk+1 −Mk
∥∥2

+
〈
∇MF (Ak+1,Mk),Mk+1 −Mk

〉
(21)
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Thus,

Ψ(Ak+1,Mk+1) ≤ F (Ak+1,Mk) +G(Ak+1)

+
〈
∇MF (Ak+1,Mk),Mk+1 −Mk

〉

+
Lk
M

2

∥∥Mk+1 −Mk
∥∥2 + r(Mk+1)

= fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk ) +
Lk
M

2

∥∥Mk+1 −Mk
∥∥2

+
∑

q 6=ωk

fq(A
k
q ,M

k) + gq(A
k
q ) + r(Mk+1)

+
〈
∇MF (Ak+1,Mk),Mk+1 −Mk

〉
. (22)

Since Mk+1 = Mk + γk
(
M̂k −Mk

)
, we further have

Ψ(Ak+1,Mk+1) ≤ fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk )

+
∑

q 6=ωk

fq(A
k
q ,M

k) + gq(A
k
q ) + r(Mk+1)

+
〈
∇MF (Ak+1,Mk),Mk+1 −Mk

〉

+
(γk)2Lk

M

2

∥∥M̂k −Mk
∥∥2. (23)

In addition, the optimality of M̂k implies

r(M̂k) +
ck
M

2

∥∥M̂k −Mk
∥∥2

+
〈
∇MF (Ak+1,Mk), M̂k −Mk

〉
≤ r(Mk)

(24)

and the convexity of r leads to

r(Mk+1) ≤ r(Mk) + γk
(
r(M̂k)− r(Mk)

)
. (25)

Combining (25), (24) and exploiting the expression Mk+1 =
Mk + γk

(
M̂k −Mk

)
leads to

r(Mk+1) ≤ r(Mk) + γk
(
r(M̂k)− r(Mk)

)

(from (24)) ≤ r(Mk)−
γkck

M

2

∥∥M̂k −Mk
∥∥2

− γk
〈
∇MF (Ak+1,Mk), M̂k −Mk

〉
. (26)

Combining (26) and (23) finally results in

Ψ(Ak+1,Mk+1) ≤ fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk )

+ r(Mk) +
∑

q 6=ωk

fq(A
k
q ,M

k) + gq(A
k
q )

−
γk

2
(ckM − γkLk

M)
∥∥M̂k −Mk

∥∥2. (27)

Step 2: Arguments similar to those used in Step 1 above

lead to

fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk ) ≤ fωk(Ak
ωk ,M

k)

+
〈
∇A

ωk
fωk(Ak

ωk ,M
k)−∇A

ωk
fωk(Ak

ωk , M̂
k),Ak+1

ωk −Ak
ωk

〉

−
γk

2

(
ckA

ωk
− γkL

k
A

ωk

)∥∥Âk
ωk −Ak

ωk

∥∥2 + gωk(Ak
ωk).

(28)

Since ∇Aω
fω(Aω, ·) is assumed to be Lipschitz continuous

(see Assumption 3(ii)), we have
〈
∇A

ωk
fωk(Ak

ωk ,M
k)−∇A

ωk
fωk(Ak

ωk , M̂
k),Ak+1

ωk −Ak
ωk

〉

≤ Lk
A,M

∥∥Mk − M̂k
∥∥∥∥Ak+1

ωk −Ak
ωk

∥∥

which, combined with (28), leads to

fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk ) ≤ fωk(Ak
ωk ,M

k)

+ Lk
A,M

∥∥Mk − M̂k
∥∥∥∥Ak+1

ωk −Ak
ωk

∥∥+ gωk(Ak
ωk)

−
γk

2

(
ckA

ωk
− γkL

k
A

ωk

)∥∥Âk
ωk −Ak

ωk

∥∥2.
(29)

Step 3: From this point, the product involving
∥∥Mk−M̃k

∥∥
in (29) can be bounded as proposed in [21, Theorem 5.1]. To

this end, we first note that

Lk
A,M

∥∥Mk − M̂k
∥∥∥∥Ak+1

ωk −Ak
ωk

∥∥

≤
Lk
A,M

2

∥∥Mk − M̂k
∥∥2 +

Lk
A,M

2

∥∥Ak+1

ωk −Ak
ωk

∥∥2

=
Lk
A,M

2

∥∥Mk − M̂k
∥∥2 +

Lk
A,Mγ2

k

2

∥∥Âk
ωk −Ak

ωk

∥∥2

(using Ak+1

ωk = Ak
ωk + γk(Â

k
ωk −Ak

ωk)). (30)

Besides, using the fact that dk
ωk ≤ τ for any index k (see

Assumption 1), we have

∥∥Mk − M̃k
∥∥2 =

∥∥
k∑

q=k−dk

ωk
+1

(Mq −Mq−1)
∥∥2

≤ τ

k∑

q=k−τ+1

∥∥Mq −Mq−1
∥∥2. (31)

Combining (29), (30), and (31) then leads to

fωk(Ak+1

ωk ,Mk) + gωk(Ak+1

ωk ) ≤ fωk(Ak
ωk ,M

k)

−
γk

2

(
ckA

ωk
− γk(L

k
A

ωk
+ Lk

A,M)
)∥∥Âk

ωk −Ak
ωk

∥∥2

+ τLk
A,M

k∑

q=k−τ+1

∥∥Mq −Mq−1
∥∥2 + gωk(Ak

ωk).

(32)

Step 4: Combining (27), (32) and using the bounds on the

different Lipschitz constants introduced in Assumptions 2(vi)

and 3(ii) finally leads to the announced result.

According to Lemma 1, the objective function Ψ is not

necessarily decreasing from an iteration to another due to the

presence of a residual term involving τ past estimates of M.

From this observation, an auxiliary function (whose derivation

is reproduced in Lemma 2 for the sake of completeness) has

been proposed in [21]. The introduction of such a function,

which is eventually non-increasing between two consecutive

iterations, is of particular interest for the convergence analysis.

This function finally allows convergence guarantees related to

the original problem (7) to be recovered.

Lemma 2 (Auxiliary function definition, adapted from [21,

Proof of Theorem 5.1]). Under the same assumptions as in

Lemma 1, let Φ be the function defined by

Φ
(
A(0),M(0),M(1), . . . ,M(τ)

)
= Ψ

(
A(0),M(0)

)

+
β

2

τ∑

q=1

(τ − q + 1)
∥∥M(q)−M(q − 1)

∥∥2 (33)

with β = τL+

A,M. Let wk = (Ak,Mk, M̌k) and M̌k =

(Mk−1, . . . ,Mk−τ ) for any iteration index k ∈ N (with the
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convention Mq = M0 if q < 0). Then,

Φ(wk+1) ≤ Φ(wk)

−
γk

2

(
cA − γk(L

+

A
+ L+

A,M)
)∥∥Âk

ωk −Ak
ωk

∥∥2

−
γk

2

(
cM − γk(L

+

M
+ τ2L+

A,M)
)∥∥M̂k −Mk

∥∥2. (34)

Proof. The expression of the auxiliary function proposed

in [21] results from the following decomposition of the resid-

ual term
∑k

q=k−τ+1

∥∥Mq−Mq−1
∥∥2. Introducing the auxiliary

variables

αk =
k∑

q=k−τ+1

(q − k + τ)
∥∥Mq −Mq−1

∥∥2

we can note that

αk − αk+1 =
k∑

q=k−τ+1

∥∥Mq −Mq−1
∥∥2 − τ

∥∥Mk+1 −Mk
∥∥2.

(35)

Thus, using the upper bound Lk
A,M ≤ L+

A,M (Assump-

tion 3(ii)) and replacing (35) in (20) yields

Ψ(Ak+1,Mk+1) + βαk+1 ≤ Ψ(Ak,Mk) + βαk

−
γk

2

(
cA − γk(L

+

A
+ L+

A,M)
)∥∥Âk

ωk −Ak
ωk

∥∥2

−
γk

2

(
cM − γk(L

+

M
+ τ2L+

A,M)
)∥∥M̂k −Mk

∥∥2.

Observing that Φ(wk) = Ψ(Ak,Mk)+αk finally leads to the

announced result.

The previous lemma makes clear that the proposed algo-

rithm can be studied as a special case of [22]. The rest of

the convergence analysis, which involves somewhat convo-

luted arguments, exactly follows [22] up to minor notational

modifications.
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