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Big data in the SKA era: a few perspectives 2/

> Modern telescopes (e.g., Square Kilometer Array (SKA): high imaging
resolution and sensitivity
e > gigabyte size image per frequency
o > 10* observation frequencies
e dynamic range 107

> Imaging challenge in bytes

» petabyte size wide-band images
» exabyte size data volumes (after correlation)
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Wide-band Rl imaging 2/

> Objective: form wide-band image X from incomplete data

M

L

N

Y e CM*L
NxL

XeRf

D
= (]:MXL

CQ centralelille

number of measurements per channel
number of spectral channels

number of pixels

wide-band data (visibilities)
wide-band image cube

measurement operator
noise
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Discrete measurement model a1

> Measurement equation:

Y=®(X)+N

Yy =®x+n, P =0GFZ (1)
X € IRﬁ image in channel [ (column of X)
yeCM data (visibilities) from channel [
Zc RN zero-padding and scaling operator
F e CfK Fourier transform
G, e CM*K interpolation (Fessler et al. 2003) and

calibration kernels (Dabbech et al. 2017)

0, RMM natural weighting (noise whitening)

n e C" ~CN(0y, a,lexM) noise (realization of a complex Gaussian r.v.)

» Data assumed to be pre-calibrated (G; completely known).
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Problem formulation .
minimize (Y, D (X)) + r(X). (2)]

NxL
XeR

f datafidelity term
(complex Gaussian noise = ¢,-norm ball constraint or quadratic term)
L
AV PO0) =)ty (D)
=1
r regularization term
~> sparsity in a transformed domain (Wenger et al. 2014; Ferrari et al. 2015).
~> low-rankness (source separation model) (Jiang et al. 2017)
~> low-rankness + sparsity in a transformed domain (Abdulaziz et al. 2019)
(shown to yield a good quality wideband image in terms of both
sensitivity and dynamic range)

© How to deal with the volume of data (M large)? (split f)
© How to address large image sizes (N large)? (split r)
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Towards a more scalable procedure 511
Primary bottleneck: data size (Onose et al. 2016)

> split data into frequency blocks (or groups of snapshots)
> assign data blocks to different data workers

Y D( X) ZZ‘B(y,b ) q)/bx/)

=1b=1
> ¢, reflects the noise statistics for the block b in the channel [ (Onose
etal. 2016)

(a) (b) (c)
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Selecting a prior r: building on the literature i

HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

> Low-rankness: sum of log functions acting on the singular values of X
> Average joint-sparsity: sum of log functions acting on ||[lP+X],-||2
(¢, norm ith of wX)

A A fullimage cube X needed in a single place (SVD of X)

wh e RN SARA dictionary (first 8 Daubechies wavelet and Dirac basis)
[2]; ith row of Z
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Parameter estimation 8/21

> Log priors: (2) not convex: use reweighting (Candeés et al. 2008)
(local majorant of r at X0, t € N current iteration index).

minimize ZlB(va,SI,b)(q)bel) +7(X, X(t)). (3)
b

NxL
XeR}*

> Convex subproblem (4):
~> primal-dual forward-backward (PDFB) (Condat 2013; V{i 2013)
~> no costly operator inversions or sub-iterations + splitting
~> handle non-smooth functions in parallel (through proximity operator)
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Image faceting /a1

Secondary bottleneck: image size (focus in this presentation)

> Rl literature: wide-band faceted calibration
and imaging DDFacet (Tasse et al. 2018)
> primarily developed for calibration
(piece-wise constant calibration model)
> tessellation improves imaging efficiency
X no convergence guarantee
~> Motivation:
> benefit from the same convergence
guarantees as HyperSARA
> keep reconstruction quality of HyperSARA
> splitimage into 3D facets
> assign portions of the image (facets) to
different workers (facet cores)

= Faceted HyperSARA
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Spectral and spatial faceting w0/

(a) Fullimage cube  (b) Spectral sub-cubes (c) Facets & weights

Figure: Illustration of the proposed faceting scheme.

> Spectral faceting: define interleaved groups of channels
~» independent problems.

> Spatial faceting: tessellate the prior along the spatial dimension.
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Faceted HyperSARA prior e

> HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

AA fullimage cube X needed in a single place
wt e RN SARA dictionary (first 8 Daubechies wavelets + Dirac)
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Faceted HyperSARA prior e

> Faceted HyperSARA: average joint-sparsity and faceted
low-rankness

v spatial tessellation
‘I’:; € Rla*Ng exact faceted implementation of wt (Prusa 2012)

§q € IRNqXN, S, € RN content-agnostic facet selection operators
D, spatial weights (mitigate tessellation artefacts)

~> Amount of overlap: free parameterforgq, fixed for S, (Prusa 2012);
~> Partially separable expression for the function r;
~> HyperSARA = faceted HyperSARA with Q = 1 facets.

Parameter estimation: same approach as for HyperSARA
> reweighting approach (to address log priors)
» convex sub-problems solved with PDFB
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Parameter estimation (PDFB) .

Split update of the auxiliary variables between two sets of cores:

> data cores: contain data & auxiliary variables of full image size (few
channels)

> facet cores: contain portions of the image cube (facet size over the
full spectrum) + associated auxiliary variables

Most of the (dual) variables updated in parallel
Parallelization flexibility: adjust to the size of the problem (N, L, M)
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14/27

(b) Aggregate borders (from neighbour

(a) Update borders (broadcast to neighbours) facets)

Figure: Communications between the facet nodes, occurring between each single
facet and a maximum of three of its neighbours.

PDFB algo.
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Validation on synthetic data 15727
Simulation settings:

> synthetic wide-band image of Cyg A: power law spectral model,
ground truth image S band (2 GHz) (Dabbech et al. 2021)

> | =20 spectral channels in frequency range [2.052,3.572] GHz
> N = 1024 x 2048 pixels

> M~ 7.62x 10°> measurements per channel, iSNR =40 dB for each
channel

» B =1data block per channel

» Comparison: SARA (Carrillo et al. 2012), HyperSARA (HS) (Abdulaziz
et al. 2019) and Faceted HyperSARA (FHS).

Assessment criteria:
> average (over the channels) reconstruction SNR (aSNR, in dB)
> runtime per PDFB iteration (runpi), active CPU time per iteration
(cpu,)
> total runtime (run), total active CPU time (cpu)
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Varying number of facets 16/

aSNR (dB) CPUcores PDFBiter. run (s) run(h) cpu,; (s) cpu(h)
SARA 35.05 (+0.59) 240 3275 3.28 (+0.38) 3.38 7.13(+0.95) 129.77
HS 39.47 (+2.15) 22 9236 25.36 (+0.85) 65.06 84.49 (+2.79) 216.76
FHS (Q =4) 39.79 (+2.34) 24 10989 26.50 (+1.88) 80.90 184.41(+9.22) 562.90
FHS (Q=9) 40.00 (+2.40) 29 11009 15.38(+1.38) 47.04  226.52(+11.00) 692.71
FHS (Q =16) 40.08 (+2.40) 36 10945 11.62 (+0.50) 35.32 286.06 (+10.80) 869.71

Table: Varying number of facets Q. SARA, HyperSARA (HS) and Faceted HyperSARA
(FHS, overlap of 10%).

> SARA: 12 cores per channel (3 for the data-fidelity terms, 9 for the
average sparsity)

> HS: 22 cores (20 for data-fidelity terms, primal variable and average
joint-sparsity terms, 2 for the low-rank prior)

» FHS: 20 cores for the data-fidelity terms + 1 core per facet (primal
variable, low-rank and joint average priors)

/\ The implementation of HS is not equivalent to the implementation of

FHS with Q = 1 (too slow in this case, run ; ~ 50s).
(. centralelille ""I;;SP %(%%
;
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Varying overlap between facets /27
aSNR (dB) CPUcores PDFBiiter. run ;. (s) run(h) cpuy; (s) cpu(h)
SARA 35.05 (+0.59) 240 3275  3.28(+0.38) 3.38 7.13 (+0.95)  129.77
HS 39.47 (+2.15) 22 9236 25.36 (+0.85)  65.06 84.49 (+2.79) 216.76
FHS (0% overlap) ~ 40.03 (+2.41) 36 10961 11.55(+0.70) 3518 284.17 (+13.40) 865.22
FHS (10% overlap) ~ 40.08 (+2.40) 36 10945 11.62(+0.50) 3532 286.06 (+10.80) 869.71
FHS (25% overlap)  40.22 (+2.41) 36 10918 11.96 (+0.53)  36.26 290.71(+13.90) 881.66
FHS (40% overlap)  40.24 (+2.42) 36 10934  12.67 (+0.55) 38.47 298.32(+14.30) 906.08
FHS (50% overlap) ~ 40.08 (+2.53) 36 10962 13.69 (+0.65)  41.68 311.14 (+16.00) 947.41
Table: Varying size of the overlap region (faceted low-rank prior). SARA,
HyperSARA (HS) and Faceted HyperSARA (FHS) with Q = 16.
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Model image (truth / HS, ch. 20) e
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Model image (truth / FHS, no overlap, ch. 20) 10721
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Model image (truth / FHS, 10% overlap, ch. 20) ==
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Real data experiment a1/
Imaging problem: 15 GB image cube of Cyg A from 7.4 GB of JVLA data

>
>

Data acquired in 2015-2016 within 2-18 GHz (courtesy of R. Perley)

Observations phase center: RA = 19h 59mn 28.356s (J2000),
DEC = +40°442.07”

4 acquisitions instances: JVLA configurations Aand C

frequency ranges (GHz): [vy, vo56] = [3.979,6.019],

[Va57, Vago] = [5.979,8.019]

Channel-width 6v = 8 MHz, total bandwidth of 4.04 GHz;
Field-of-view (FoV): Q) = 2.56” x 1.536’, pixel size 6x = 0.06”

~> N = 1536 x 2560

B =2 data blocks per channel (one per configuration)

Q = 3 x5 facets, C = 16 subcubes (30 channels each)

Pre-processing: monochromatic joint calibration and imaging
((Dabbech et al. 2021) used to initialize SARA and FHS (DDE + image))
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Real data (l) 2

Figure: Cyg A (SARA), spectral resolution 8 MHz, 7.4 GB data, channel v; = 3.979
GHz. Images in Jy/pixel, angular resolution 0.06” (3.53x spatial bandwidth).
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Real data (l1) e

Figure: Cyg A (FHS), spectral resolution 8 MHz, 7.4 GB data, channel v; = 3.979
GHz. Images in Jy/pixel, angular resolution 0.06” (3.53x spatial bandwidth).
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Real data (ll1) w21

-5

10 ’4

Figure: Cyg A (SARA), spectral resolution 8 MHz, 7.4 GB data, channel v4g9 = 8.019
GHz. Images in Jy/pixel, angular resolution 0.06” (1.75x spatial bandwidth).
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Real data (V) 25/

Figure: Cyg A (FHS), spectral resolution 8 MHz, 7.4 GB data, channel v4gp = 8.019
GHz. Images in Jy/pixel, angular resolution 0.06” (1.75x spatial bandwidth).
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Conclusions and perspectives /1

Conclusions: faceted prior for wide-band imaging
V' quality comparable to HyperSARA
/' lower computing time (increased distribution flexibility)

v spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)
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Conclusions and perspectives /1

Conclusions: faceted prior for wide-band imaging
V' quality comparable to HyperSARA
/' lower computing time (increased distribution flexibility)

v spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)

Perspectives:
— investigate faceted approximation to the Fourier transform
~> reduce communications, facilitate load balancing
— faceted prior for joint calibration and imaging?
~> PDFB not applicable in this context.
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Conclusions and perspectives 26/

Conclusions: faceted prior for wide-band imaging
V' quality comparable to HyperSARA
/' lower computing time (increased distribution flexibility)

v spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)

Perspectives:
— investigate faceted approximation to the Fourier transform
~> reduce communications, facilitate load balancing

— faceted prior for joint calibration and imaging?
~> PDFB not applicable in this context.

Thank you for your attention.
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Facet weights

0.6 06

0.4
04 g2

(b) 3D view

(a) Weights for the central facet

Figure: Facet weights (Dq) , for Q = 9 (3 facets along each spatial

1<g<Q
dimension).
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Backup (priors) v

> HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

/

i=1

rX)=p) v

lo (”[‘F Xli ”2 i ( l) (HyperSARA)

A A

‘P‘l’ c IR/XN
W, 0,0 >0

(0j(Z))1<j<u
(Z];

Thouvenin et al.

fullimage cube X needed in a single place (SVD of X)

SARA dictionary (first 8 Daubechies wavelet and Dirac basis)
regularization parameters

singular values of the matrix Z, with J = min{N, L}

ith row of Z

Faceted HyperSARA September 4, 2021



Parameter estimation
> Log priors: (2) not convex: use reweighting (Candeés et al. 2008)
(local majorant of r at X(t), t € IN current iteration index).

m)ngerElez € Z‘B(Vz,byfl,b)(q)’rbx’ ) +r(X X)), ()
HyperSARA:
r(6XO) = @ Xy, o xr) + AL x0y, (5)
X = oI XY +0) ©
@;(x(0)) = U(|aj(x(f))| + 5)71. (7)

» Convex subproblem (4):
~> primal-dual forward-backward (PDFB) (Condat 2013; V{i 2013)
~> no costly operator inversions or sub-iterations + splitting
~> handle non-smooth functions in parallel (through proximity operator)

Thouvenin et al. Faceted HyperSARA September 4, 2021
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Faceted HyperSARA prior e

> HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

/ J
r(X) =p Zv |og(w+l)+ﬁ Zﬁlog( laj(ﬁx)l +l) (HyperSARA)

AN fullimage cube X needed in a single place
wt e RIXN SARA dictionary (first 8 Daubechies wavelets + Dirac)

Thouvenin et al. Faceted HyperSARA September 4, 2021



Faceted HyperSARA prior e

> Faceted HyperSARA: average joint-sparsity and faceted
low-rankness

- 55
=1

Vg
(faceted HyperSARA)

v spatial tessellation

Wi e RaNg exact faceted implementation of W (Prusa 2012)
§q e RN, S, € RNV content-agnostic facet selection operators

D, spatial weights (mitigate tessellation artefacts)

~> Amount of overlap: free parameter forgq, fixed for S, (Prusa 2012);
~> Partially separable expression for the function r;
~> HyperSARA = faceted HyperSARA with Q = 1 facets.
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Backup (reweighting scheme) 9

Data: (y;p)p,c€{1,...,Cl,le{1,...,L},be(l,..., B}

imput: X, 60w (0
Parameters: 7> 0,0 < érw <1

t—0,& « 400
while (t<T)and (£ > < )do
forg=1toQdo

// Update weights (low-rankness prior)

20 _ — (B,
ec,q:wc,q(xc );
// Update weights (joint-sparsity prior)

et (6)y.
cq‘— cg(xc L
// Run inner PDFB algorithm

(xﬁtﬂ),pE”‘*l),wE"‘“),v?*l)) PDFB(th),PE),WE), ®) e(t) 6())

£ = I _x O xO) e
| tet+1;
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Backup (PDFB) | "
Data: (ycr['b)[’b, le{l,...,L},be(l,..., B}

Input: XEO), P(O) = (Pgoq)) W(O) = (Wc(:oq)) "’f(—‘O) = (VES?b)c,I,b’

( )1<q<Q ¢ (Cq)1<q<Q

Parameters: (D;)q, (Ucib)16, € = (€cb)ibs Mes (B g)gs T G (e )1<ists K,
0 <Prin <Pmax, 0< <& odfb < 1

p —0; & = +o0;
X( ) x((:o)’x(o) ( ( ))l<[<L — sz(o)

cl
0 0
i = (1)1 € R, with 1), = llye - Dy sx Il

C
aro O IE2)1 > L01ell,)] do

// Update low-rankness and sparsity variables
v \P

split (X¢ X ))1<q<Q = (qug ))15qso;
v \P

split (X Sq))1<q<o = (5% 10503

while (p < Ppin) OF [(p <Pmax) and (& > &

Thouvenin et al. Faceted HyperSARA September 4, 2021



Backup (PDFB) Il 7

// [Parallel on facet cores]
forg=1toQdo

(p+1) (p) %p)
Pc q (IN ><N prOXC'lﬁcH'll*,aC,q )(Pc‘q + D )

;(p+1) _ D*PE p+1),

H

ngqul) (l/ xlg — PrOX— LtelMlz 1,60 4 )(Wg‘z) _|_\p‘l’ (P ))
ng;rl) w, W( +1)

// Update data fldellty variables [data cores]
for/=1toL.do
PN 1

82D _ pzy®)

c/

’ o(p+1
split (x f;[b ))1sbsB=(Mc,/,bX£,1 ))1sb53;
for b=1toB do
(p+1) _
e ®) (0+1) (o)
Ui p (p+1)  o(p) ).

Uc,l,b(IMc,b ProXys(y, ,bec,b))(uc/bvc/b+Gcrl'b(2xc,l,b _xc,l,b))’
TP gt P,

clb alb ’

1) Lot
fern = eib = GerpXy ||z,
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Backup (PDFB) Il

// Inter node communications

for/=1toL.do

Q
() _ 3 (p+) +=(p+1) +pt + =(p+1),
a _Z(C aPcql KSqw Weq,l )JFWCJZ F Z,Mclbvc,[b ’
b

qg=1
// Update image tiles [on facet cores, in parallel]
X(p+ ) = prox, Rk (XEP) _TAEP)); /" Agp) :(ag))qu
R
X(p+l) 2X<p+l) X((:p); // communicate facet borders
LR

P<—P+1,
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D @ Varying number of facets s

aSNR (dB) CPUcores PDFBiter. run (s) run(h) cpu,; (s) cpu(h)
SARA 35.05 (+0.59) 240 3275 3.28 (+0.38) 3.38 7.13(+0.95) 129.77
HS 39.47 (+2.15) 22 9236 25.36 (+0.85) 65.06 84.49 (+2.79) 216.76
FHS (Q =4) 39.79 (+2.34) 24 10989 26.50 (+1.88) 80.90 184.41(+9.22) 562.90
FHS (Q=9) 40.00 (+2.40) 29 11009 15.38(+1.38) 47.04  226.52(+11.00) 692.71
FHS (Q =16) 40.08 (+2.40) 36 10945 11.62 (+0.50) 35.32 286.06 (+10.80) 869.71

Table: Varying number of facets Q. SARA, HyperSARA (HS) and Faceted HyperSARA
(FHS, overlap of 10%).

> SARA: 12 cores per channel (3 for the data-fidelity terms, 9 for the
average sparsity)

> HS: 22 cores (20 for data-fidelity terms, primal variable and average
joint-sparsity terms, 2 for the low-rank prior)

» FHS: 20 cores for the data-fidelity terms + 1 core per facet (primal
variable, low-rank and joint average priors)

/\ The implementation of HS is not equivalent to the implementation of
FHS with Q = 1 (too slow in this case, run ; ~ 50s).
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D @D Varying overlap between facets

aSNR (dB) CPUcores PDFBiiter. run ;. (s) run(h) cpuy; (s) cpu(h)
SARA 35.05 (+£0.59) 240 3275  3.28(+0.38) 3.38 7.13(£0.95) 129.77
HS 39.47 (+2.15) 22 9236 25.36(+0.85)  65.06 84.49 (+2.79) 216.76
FHS (0% overlap)  40.03 (+2.41) 36 10961 11.55(+0.70) 3518 284.17 (+13.40) 865.22
FHS (10% overlap) ~ 40.08 (+2.40) 36 10945 11.62(+0.50)  35.32 286.06 (+10.80) 869.71
FHS (25% overlap)  40.22 (+2.41) 36 10918 11.96 (+0.53)  36.26 290.71(+13.90) 881.66
FHS (40% overlap)  40.24 (+2.42) 36 10934 12.67 (+0.55)  38.47 298.32(+14.30) 906.08
FHS (50% overlap) ~ 40.08 (+2.53) 36 10962 13.69 (+0.65)  41.68 311.14(+16.00) 947.41

Table: Varying size of the overlap region (faceted low-rank prior). SARA,
HyperSARA (HS) and Faceted HyperSARA (FHS) with Q = 16.
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Spectral faceting

aSNR (dB) CPU cores PDFBiiter. rung; (s) run(h) CpUL; (s)  cpu(h)
SARA 19.76 (+3.19) 1200 2205 0.55 (+0.046) 0.41  0.87 (+0.056) 53.01
HS 22.27 (+2.56) 16 3800 11.30(+1.01) 12.01 64.71(+2.42) 68.75
FHS (C=2) 21.77 (+2.51) 32 2400 5.68 (+0.45) 3.80 32.25(+1.72) 43.18
FHS(C=5) 21.85(+2.72) 80 2380  2.67 (+0.44) 201 13.78(+1.17)  45.74
FHS (C=10) 22.04 (+2.85) 160 2540 1.53 (+0.29) 1.36 7.04 (+0.91) 49.58

Table: Spectral faceting: FHS with a varying number of spectral sub-problems C
and Q = 1, compared to HyperSARA (= FHS with Q = C = 1) and SARA (= FHS with
Q=1landC=1).
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