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2 / 27Big data in the SKA era: a few perspectives

▶ Modern telescopes (e.g., Square Kilometer Array (SKA): high imaging
resolution and sensitivity

• > gigabyte size image per frequency
• > 104 observation frequencies
• dynamic range 107

▶ Imaging challenge in bytes
▶ petabyte size wide-band images
▶ exabyte size data volumes (after correlation)



3 / 27Wide-band RI imaging

▶ Objective: form wide-band image X from incomplete data




Y



=Φ


 ?

X



+N

M number of measurements per channel
L number of spectral channels
N number of pixels
Y ∈ CM×L wide-band data (visibilities)
X ∈ RN×L

+ wide-band image cube

Φ measurement operator
N ∈ CM×L noise



4 / 27Discrete measurement model

▶ Measurement equation:

Y=Φ(X)+N

yl =Φlxl+nl, Φl =ΘlGlFZ (1)

xl ∈ R
N
+ image in channel l (column of X)

yl ∈ C
M data (visibilities) from channel l

Z ∈ RK×N zero-padding and scaling operator

F ∈ CK×K Fourier transform

Gl ∈ C
M×K interpolation (Fessler et al. 2003) and

calibration kernels (Dabbech et al. 2017)

Θl ∈ R
M×M natural weighting (noise whitening)

nl ∈ C
M ∼ CN (0M,σ

2
l
IM×M) noise (realization of a complex Gaussian r.v.)

▶ Data assumed to be pre-calibrated (Gl completely known).



5 / 27Problem formulation

minimize
X∈RN×L

+

f
(
Y,Φ(X)

)
+ r(X). (2)

f data ődelity term
(complex Gaussian noise⇒ ℓ2-norm ball constraint or quadratic term)

f
(
Y,Φ(X)

)
=

L∑

l=1

ιB(yl,εl)
(
Φlxl

)

r regularization term
{ sparsity in a transformed domain (Wenger et al. 2014; Ferrari et al. 2015)...
{ low-rankness (source separation model) (Jiang et al. 2017)
{ low-rankness + sparsity in a transformed domain (Abdulaziz et al. 2019)
(shown to yield a good quality wideband image in terms of both
sensitivity and dynamic range)
...

1 How to deal with the volume of data (M large)? (split f )

2 How to address large image sizes (N large)? (split r)



6 / 27Towards a more scalable procedure
Primary bottleneck: data size (Onose et al. 2016)

▶ split data into frequency blocks (or groups of snapshots)

▶ assign data blocks to different data workers

f
(
Y,Φ(X)

)
=

L∑

l=1

B∑

b=1

ιB(yl,b,εl,b)
(
Φl,bxl

)

▶ εl,b reŕects the noise statistics for the block b in the channel l (Onose
et al. 2016)

(a) (b) (c)



7 / 27Selecting a prior r: building on the literature

HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

▶ Low-rankness: sum of log functions acting on the singular values of X

▶ Average joint-sparsity: sum of log functions acting on ∥[Ψ†X]i∥2

(ℓ2 norm ith ofΨ†X)

"" full image cube X needed in a single place (SVD of X)

Ψ
† ∈ RI×N SARA dictionary (őrst 8 Daubechies wavelet and Dirac basis)

[Z]i ith row of Z



8 / 27Reweighting algo. Parameter estimation

▶ Log priors: (2) not convex: use reweighting (Candès et al. 2008)

(local majorant of r at X(t), t ∈N current iteration index).

minimize
X∈RN×L

+

∑

l,b

ιB(yl,b,εl,b)
(
Φl,bxl

)
+ r(X,X(t)). (3)

▶ Convex subproblem (4):

{ primal-dual forward-backward (PDFB) (Condat 2013; Vũ 2013)

{ no costly operator inversions or sub-iterations + splitting

{ handle non-smooth functions in parallel (through proximity operator)



9 / 27Image faceting

Secondary bottleneck: image size (focus in this presentation)

▶ RI literature: wide-band faceted calibration
and imaging DDFacet (Tasse et al. 2018)
▶ primarily developed for calibration
(piece-wise constant calibration model)

▶ tessellation improves imaging efficiency
✘ no convergence guarantee

{ Motivation:
▶ beneőt from the same convergence
guarantees as HyperSARA

▶ keep reconstruction quality of HyperSARA
▶ split image into 3D facets
▶ assign portions of the image (facets) to
different workers (facet cores)

⇒ Faceted HyperSARA
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10 / 27Spectral and spatial faceting

(a) Full image cube (b) Spectral sub-cubes (c) Facets & weights

Figure: Illustration of the proposed faceting scheme.

▶ Spectral faceting: deőne interleaved groups of channels
{ independent problems.

▶ Spatial faceting: tessellate the prior along the spatial dimension.



11 / 27Faceted HyperSARA prior

▶ HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

"" full image cube X needed in a single place

Ψ
† ∈ RI×N SARA dictionary (őrst 8 Daubechies wavelets + Dirac)



11 / 27Faceted HyperSARA prior

▶ Faceted HyperSARA: average joint-sparsity and faceted
low-rankness

✓ spatial tessellation

Ψ
†
q ∈ R

Iq×Nq exact faceted implementation ofΨ† (Prusa 2012)

S̃q ∈ R
Ñq×N, Sq ∈ R

Nq×N content-agnostic facet selection operators
Dq spatial weights (mitigate tessellation artefacts)

{ Amount of overlap: free parameter for S̃q, őxed for Sq (Prusa 2012);

{ Partially separable expression for the function r;

{ HyperSARA = faceted HyperSARA with Q= 1 facets.

Parameter estimation: same approach as for HyperSARA

▶ reweighting approach (to address log priors)

▶ convex sub-problems solved with PDFB



12 / 27PDFB algo. Parameter estimation (PDFB)

Split update of the auxiliary variables between two sets of cores:

▶ data cores: contain data & auxiliary variables of full image size (few
channels)

▶ facet cores: contain portions of the image cube (facet size over the
full spectrum) + associated auxiliary variables

Most of the (dual) variables updated in parallel

Parallelization ŕexibility: adjust to the size of the problem (N, L,M)
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Nx,q

Ny,q

Lc

(a)Update borders (broadcast to neighbours)

Nx,q

Ny,q

Lc

⊕

⊕

⊕

(b) Aggregate borders (from neighbour
facets)

Figure: Communications between the facet nodes, occurring between each single
facet and amaximum of three of its neighbours.

PDFB algo.
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15 / 27Validation on synthetic data
Simulation settings:

▶ synthetic wide-band image of Cyg A: power law spectral model,
ground truth image S band (2 GHz) (Dabbech et al. 2021)

▶ L= 20 spectral channels in frequency range [2.052,3.572] GHz

▶ N= 1024× 2048 pixels
▶ M ≈ 7.62× 105 measurements per channel, iSNR = 40 dB for each
channel

▶ B= 1 data block per channel

▶ Comparison: SARA (Carrillo et al. 2012), HyperSARA (HS) (Abdulaziz
et al. 2019) and Faceted HyperSARA (FHS).

Assessment criteria:

▶ average (over the channels) reconstruction SNR (aSNR, in dB)

▶ runtime per PDFB iteration (run
pi
), active CPU time per iteration

(cpu
pi
)

▶ total runtime (run), total active CPU time (cpu)



16 / 27Varying number of facets

aSNR (dB) CPU cores PDFB iter. run
pi
(s) run (h) cpu

pi
(s) cpu (h)

SARA 35.05 (±0.59) 240 3275 3.28 (±0.38) 3.38 7.13 (±0.95) 129.77
HS 39.47 (±2.15) 22 9236 25.36 (±0.85) 65.06 84.49 (±2.79) 216.76
FHS (Q= 4) 39.79 (±2.34) 24 10989 26.50 (±1.88) 80.90 184.41 (±9.22) 562.90
FHS (Q= 9) 40.00 (±2.40) 29 11009 15.38 (±1.38) 47.04 226.52(±11.00) 692.71
FHS (Q= 16) 40.08 (±2.40) 36 10945 11.62 (±0.50) 35.32 286.06 (±10.80) 869.71

Table: Varying number of facets Q. SARA, HyperSARA (HS) and Faceted HyperSARA
(FHS, overlap of 10%).

▶ SARA: 12 cores per channel (3 for the data-ődelity terms, 9 for the
average sparsity)

▶ HS: 22 cores (20 for data-ődelity terms, primal variable and average
joint-sparsity terms, 2 for the low-rank prior)

▶ FHS: 20 cores for the data-ődelity terms + 1 core per facet (primal
variable, low-rank and joint average priors)

" The implementation of HS is not equivalent to the implementation of
FHS with Q= 1 (too slow in this case, run

pi
≈ 50 s).



17 / 27Varying overlap between facets

aSNR (dB) CPU cores PDFB iter. run
pi
(s) run (h) cpu

pi
(s) cpu (h)

SARA 35.05 (±0.59) 240 3275 3.28 (±0.38) 3.38 7.13 (±0.95) 129.77
HS 39.47 (±2.15) 22 9236 25.36 (±0.85) 65.06 84.49 (±2.79) 216.76
FHS (0% overlap) 40.03 (±2.41) 36 10961 11.55 (±0.70) 35.18 284.17 (±13.40) 865.22
FHS (10% overlap) 40.08 (±2.40) 36 10945 11.62 (±0.50) 35.32 286.06 (±10.80) 869.71
FHS (25% overlap) 40.22 (±2.41) 36 10918 11.96 (±0.53) 36.26 290.71 (±13.90) 881.66
FHS (40% overlap) 40.24 (±2.42) 36 10934 12.67 (±0.55) 38.47 298.32 (±14.30) 906.08
FHS (50% overlap) 40.08 (±2.53) 36 10962 13.69 (±0.65) 41.68 311.14 (±16.00) 947.41

Table: Varying size of the overlap region (faceted low-rank prior). SARA,
HyperSARA (HS) and Faceted HyperSARA (FHS) with Q= 16.



18 / 27Model image (truth / HS, ch. 20)

10
-6

10
-4

10
-2

10
-6

10
-4

10
-2



19 / 27Model image (truth / FHS, no overlap, ch. 20)
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20 / 27More results Model image (truth / FHS, 10% overlap, ch. 20)
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21 / 27Real data experiment
Imaging problem: 15 GB image cube of Cyg A from 7.4 GB of JVLA data

▶ Data acquired in 2015-2016 within 2ś18 GHz (courtesy of R. Perley)

▶ Observations phase center: RA = 19h 59mn 28.356s (J2000),
DEC =+40°44′2.07′′

▶ 4 acquisitions instances: JVLA conőgurations A and C

frequency ranges (GHz): [ν1,ν256] = [3.979,6.019],

[ν257,ν480] = [5.979,8.019]

▶ Channel-width δν = 8 MHz, total bandwidth of 4.04 GHz;

▶ Field-of-view (FoV):Ω0 = 2.56′ × 1.536′ , pixel size δx = 0.06′′

{ N= 1536× 2560

▶ B= 2 data blocks per channel (one per conőguration)

▶ Q= 3× 5 facets, C= 16 subcubes (30 channels each)

▶ Pre-processing: monochromatic joint calibration and imaging

((Dabbech et al. 2021) used to initialize SARA and FHS (DDE + image))



22 / 27Real data (I)
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Figure: Cyg A (SARA), spectral resolution 8 MHz, 7.4 GB data, channel ν1 = 3.979
GHz. Images in Jy/pixel, angular resolution 0.06′′ (3.53× spatial bandwidth).
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Figure: Cyg A (FHS), spectral resolution 8 MHz, 7.4 GB data, channel ν1 = 3.979
GHz. Images in Jy/pixel, angular resolution 0.06′′ (3.53× spatial bandwidth).
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Figure: Cyg A (SARA), spectral resolution 8 MHz, 7.4 GB data, channel ν480 = 8.019
GHz. Images in Jy/pixel, angular resolution 0.06′′ (1.75× spatial bandwidth).
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Figure: Cyg A (FHS), spectral resolution 8 MHz, 7.4 GB data, channel ν480 = 8.019
GHz. Images in Jy/pixel, angular resolution 0.06′′ (1.75× spatial bandwidth).
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26 / 27Conclusions and perspectives

Conclusions: faceted prior for wide-band imaging

✓ quality comparable to HyperSARA

✓ lower computing time (increased distribution ŕexibility)

✓ spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)



26 / 27Conclusions and perspectives

Conclusions: faceted prior for wide-band imaging

✓ quality comparable to HyperSARA

✓ lower computing time (increased distribution ŕexibility)

✓ spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)

Perspectives:

→ investigate faceted approximation to the Fourier transform

{ reduce communications, facilitate load balancing

→ faceted prior for joint calibration and imaging?

{ PDFB not applicable in this context.



26 / 27Conclusions and perspectives

Conclusions: faceted prior for wide-band imaging

✓ quality comparable to HyperSARA

✓ lower computing time (increased distribution ŕexibility)

✓ spectral faceting, possible combination with dim. reduction
(Thouvenin et al. 2020) (not addressed today)

Perspectives:

→ investigate faceted approximation to the Fourier transform

{ reduce communications, facilitate load balancing

→ faceted prior for joint calibration and imaging?

{ PDFB not applicable in this context.

Thank you for your attention.
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▶ HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

r(X) = µ

I∑

i=1

υ log
(
∥[Ψ†X]i∥2

υ
+1

)
+µ

J∑

j=1

υ log
( |σj(X)|

υ
+1

)
(HyperSARA)

"" full image cube X needed in a single place (SVD of X)

Ψ
† ∈ RI×N SARA dictionary (őrst 8 Daubechies wavelet and Dirac basis)

µ,µ,υ,υ > 0 regularization parameters

(σj(Z))1≤j≤J singular values of the matrix Z, with J=min{N,L}

[Z]i ith row of Z

Thouvenin et al. Faceted HyperSARA September 4, 2021



4 / 9Backup slide Reweighting algo. Parameter estimation
▶ Log priors: (2) not convex: use reweighting (Candès et al. 2008)

(local majorant of r at X(t), t ∈N current iteration index).

minimize
X∈RN×L

+

∑

l,b

ιB(yl,b,εl,b)
(
Φl,bxl

)
+ r(X,X(t)). (4)

HyperSARA:

r(X,X(t)) = µ∥Ψ†X∥2,1,ω(X(t))+µ∥X∥∗,ω(X(t)), (5)

ωi(X
(t)) = υ

(
∥[Ψ†X(t)]i∥2+υ

)−1
, (6)

ωj(X
(t)) = υ

(∣∣∣σj(X(t))
∣∣∣+υ

)−1
. (7)

▶ Convex subproblem (4):

{ primal-dual forward-backward (PDFB) (Condat 2013; Vũ 2013)

{ no costly operator inversions or sub-iterations + splitting

{ handle non-smooth functions in parallel (through proximity operator)

Thouvenin et al. Faceted HyperSARA September 4, 2021



5 / 9Backup slide Faceted HyperSARA prior

▶ HyperSARA (Abdulaziz et al. 2019): average joint-sparsity and
low-rankness

r(X) = µ

I∑

i=1

υ log
(
∥[Ψ†X]i∥2

υ
+1

)
+µ

J∑

j=1

υ log
( |σj(X)|

υ
+1

)
(HyperSARA)

"" full image cube X needed in a single place

Ψ
† ∈ RI×N SARA dictionary (őrst 8 Daubechies wavelets + Dirac)
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5 / 9Backup slide Faceted HyperSARA prior

▶ Faceted HyperSARA: average joint-sparsity and faceted
low-rankness

r(X) =

Q∑

q=1

(
µ

Iq∑

i=1

υ log
(∥[Ψ†qSqX]i∥2

υ
+1

)
+µq

Jq∑

j=1

υq log
( |σj(DqS̃qX)|

υq
+1

))

(faceted HyperSARA)

✓ spatial tessellation

Ψ
†
q ∈ R

Iq×Nq exact faceted implementation ofΨ† (Prusa 2012)

S̃q ∈ R
Ñq×N, Sq ∈ R

Nq×N content-agnostic facet selection operators
Dq spatial weights (mitigate tessellation artefacts)

{ Amount of overlap: free parameter for S̃q, őxed for Sq (Prusa 2012);

{ Partially separable expression for the function r;

{ HyperSARA = faceted HyperSARA with Q= 1 facets.

Thouvenin et al. Faceted HyperSARA September 4, 2021
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Data: (yl,b)l,b, c ∈ {1, . . . ,C}, l ∈ {1, . . . ,Lc}, b ∈ {1, . . . ,B}

Input: X
(0)
c , P

(0)
c ,W

(0)
c , v

(0)
c

Parameters: T > 0, 0 < ξ
rw

< 1

t← 0, ξ←+∞
while (t < T) and (ξ > ξ

rw
) do

for q= 1 to Q do
// Update weights (low-rankness prior)

θ
(t)
c,q =ωc,q(X

(t)
c );

// Update weights (joint-sparsity prior)

θ
(t)
c,q =ωc,q(X

(t)
c );

// Run inner PDFB algorithm

(X
(t+1)
c ,P

(t+1)
c ,W

(t+1)
c ,v

(t+1)
c ) = PDFB

(
X
(t)
c ,P

(t)
c ,W

(t)
c ,v

(t)
c ,θ

(t)
c ,θ

(t)
c

)
;

ξ = ∥X
(t+1)
c −X

(t)
c ∥F/∥X

(t)
c ∥F;

t← t+ 1;
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7 / 9Back to presentation Backup slide Backup (PDFB) I
Data: (yc,l,b)l,b, l ∈ {1, . . . ,Lc}, b ∈ {1, . . . ,B}

Input: X
(0)
c , P

(0)
c =

(
P
(0)
c,q

)
q
,W

(0)
c =

(
W

(0)
c,q

)
q
, v

(0)
c =

(
v
(0)
c,l,b

)
c,l,b

,

θc =
(
θc,q

)
1≤q≤Q

, θc =
(
θc,q

)
1≤q≤Q

Parameters: (Dq)q, (Uc,l,b)l,b, ε= (εc,l,b)l,b, µc, (µc,q)q, τ, ζ, (ηc,l)1≤l≤L, κ,
0 < Pmin < Pmax, 0 < ξ

pdfb
< 1

p← 0; ξ =+∞;

X̌
(0)
c = X

(0)
c , X̂

(0)
c = (x̂

(0)
c,l )1≤l≤Lc = FZX

(0)
c ;

r
(0)
c = (r

(0)
c,l,b)l,b ∈ R

LcB, with r
(0)
c,l,b = ∥yc,l,b −Φc,l,bx

(0)
c,l ∥2;

while (p < Pmin) or
[
(p < Pmax) and (ξ > ξ

pdfb
or ∥r

(p)
c ∥2 > 1.01∥ε∥2)

]
do

// Update low-rankness and sparsity variables

split (̃X
(p)
c,q )1≤q≤Q = (̃SqX̌

(p)
c )1≤q≤Q;

split (X̌
(p)
c,q )1≤q≤Q = (SqX̌

(p)
c )1≤q≤Q;
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7 / 9Back to presentation Backup slide Backup (PDFB) II
// [Parallel on facet cores]

for q = 1 to Q do

P
(p+1)
c,q =

(
IÑq×Ñq − proxζ−1µc∥·∥∗,θc,q

)(
P
(p)
c,q +DqX̃

(p)
c,q

)
;

P̃
(p+1)
c,q = D†qP

(p+1)
c ;

W
(p+1)
c,q =

(
IIq×Iq − proxκ−1µc∥·∥2,1,θc,q

)(
W

(p)
c,q +Ψ

†
qX̌

(p)
c,q

)
;

W̃
(p+1)
c,q =ΨqW

(p+1)
c,q ;

// Update data fidelity variables [data cores]

for l = 1 to Lc do

x̂
(p+1)
c,l = FZx

(p)
c,l

split (x̂
(p+1)
c,l,b )1≤b≤B = (Mc,l,bx̂

(p+1)
c,l )1≤b≤B;

for b = 1 to B do

v
(p+1)
c,l,b =

Uc,l,b
(
IMc,l,b − prox

Uc,l,b
ιB(yc,l,b ,εc,l,b)

)(
U−1
c,l,bv

(p)
c,l,b+Gc,l,b(2x̂

(p+1)
c,l,b − x̂

(p)
c,l,b)

)
;

ṽ
(p+1)
c,l,b = G†

c,l,bv
(p+1)
c,l,b ;

r
(p+1)
c,l,b = ∥yc,l,b −Gc,l,bx̂

(p+1)
c,l,b ∥2;
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7 / 9Back to presentation Backup slide Backup (PDFB) III

// Inter node communications

for l = 1 to Lc do

a
(p)
c,l =

Q∑

q=1

(
ζS̃†qp̃

(p+1)
c,q,l +κS†qw̃

(p+1)
c,q,l

)
+ ηc,lZ

†F†
∑

b

M†c,l,bṽ
(p+1)
c,l,b ;

// Update image tiles [on facet cores, in parallel]

X
(p+1)
c = proxι

R
N×Lc
+

(
X
(p)
c − τA

(p)
c

)
; // A

(p)
c =

(
a
(p)
c,l

)
1≤l≤L

X̌
(p+1)
c = 2X

(p+1)
c −X

(p)
c ; // communicate facet borders

ξ = ∥X
(p+1)
c −X

(p)
c ∥F/∥X

(p)
c ∥F;

p← p+ 1;
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7 / 9Back to presentation Backup slide Varying number of facets

aSNR (dB) CPU cores PDFB iter. run
pi
(s) run (h) cpu

pi
(s) cpu (h)

SARA 35.05 (±0.59) 240 3275 3.28 (±0.38) 3.38 7.13 (±0.95) 129.77
HS 39.47 (±2.15) 22 9236 25.36 (±0.85) 65.06 84.49 (±2.79) 216.76
FHS (Q= 4) 39.79 (±2.34) 24 10989 26.50 (±1.88) 80.90 184.41 (±9.22) 562.90
FHS (Q= 9) 40.00 (±2.40) 29 11009 15.38 (±1.38) 47.04 226.52(±11.00) 692.71
FHS (Q= 16) 40.08 (±2.40) 36 10945 11.62 (±0.50) 35.32 286.06 (±10.80) 869.71

Table: Varying number of facets Q. SARA, HyperSARA (HS) and Faceted HyperSARA
(FHS, overlap of 10%).

▶ SARA: 12 cores per channel (3 for the data-ődelity terms, 9 for the
average sparsity)

▶ HS: 22 cores (20 for data-ődelity terms, primal variable and average
joint-sparsity terms, 2 for the low-rank prior)

▶ FHS: 20 cores for the data-ődelity terms + 1 core per facet (primal
variable, low-rank and joint average priors)

" The implementation of HS is not equivalent to the implementation of
FHS with Q= 1 (too slow in this case, run

pi
≈ 50 s).
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8 / 9Back to presentation Backup slide Varying overlap between facets

aSNR (dB) CPU cores PDFB iter. run
pi
(s) run (h) cpu

pi
(s) cpu (h)

SARA 35.05 (±0.59) 240 3275 3.28 (±0.38) 3.38 7.13 (±0.95) 129.77
HS 39.47 (±2.15) 22 9236 25.36 (±0.85) 65.06 84.49 (±2.79) 216.76
FHS (0% overlap) 40.03 (±2.41) 36 10961 11.55 (±0.70) 35.18 284.17 (±13.40) 865.22
FHS (10% overlap) 40.08 (±2.40) 36 10945 11.62 (±0.50) 35.32 286.06 (±10.80) 869.71
FHS (25% overlap) 40.22 (±2.41) 36 10918 11.96 (±0.53) 36.26 290.71 (±13.90) 881.66
FHS (40% overlap) 40.24 (±2.42) 36 10934 12.67 (±0.55) 38.47 298.32 (±14.30) 906.08
FHS (50% overlap) 40.08 (±2.53) 36 10962 13.69 (±0.65) 41.68 311.14 (±16.00) 947.41

Table: Varying size of the overlap region (faceted low-rank prior). SARA,
HyperSARA (HS) and Faceted HyperSARA (FHS) with Q= 16.
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9 / 9Backup slide Spectral faceting

aSNR (dB) CPU cores PDFB iter. run
pi
(s) run (h) cpu

pi
(s) cpu (h)

SARA 19.76 (±3.19) 1200 2205 0.55 (±0.046) 0.41 0.87 (±0.056) 53.01
HS 22.27 (±2.56) 16 3800 11.30 (±1.01) 12.01 64.71 (±2.42) 68.75
FHS (C= 2) 21.77 (±2.51) 32 2400 5.68 (±0.45) 3.80 32.25 (±1.72) 43.18
FHS (C= 5) 21.85 (±2.72) 80 2380 2.67 (±0.44) 2.01 13.78 (±1.17) 45.74
FHS (C= 10) 22.04 (±2.85) 160 2540 1.53 (±0.29) 1.36 7.04 (±0.91) 49.58

Table: Spectral faceting: FHS with a varying number of spectral sub-problems C
and Q= 1, compared to HyperSARA (= FHS with Q= C= 1) and SARA (= FHS with
Q= 1 and C= L).
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